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ABSTRACT

The multi-class class-imbalance problem is a subset of supervised machine learning tasks

where the classification variable of interest consists of three or more categories with unequal

sample sizes. In the fields of manufacturing and business, common machine learning classifica-

tion tasks such as failure mode, fraud, and threat detection often exhibit class imbalance due to

the infrequent occurrence of one or more event states. Though machine learning as a discipline

is well established, the study of class imbalance with respect to multi-class learning does not yet

have the same deep, rich history. In its current state, the class imbalance literature leverages

the use of biased sampling and increasing model complexity to improve predictive performance,

and while some have made advances, there are still no standard model evaluation criteria for

which to compare their performance. In the presence of substantial multi-class distributional

skew, of the model evaluation criteria that can scale beyond the binary case, many become

invalid due to their over-emphasis on the majority class observations.

Going a step further, many of the evaluation criteria utilized in practice vary significantly

across the class imbalance literature and so far no single measure has been able to galvanize

consensus due not only to implementation complexity, but the existence of undesirable prop-

erties. Therefore, the focus of this research is to introduce a new performance measure, Class

Balance Accuracy, designed specifically for model validation in the presence of multi-class im-

balance. This paper begins with the statement of definition for Class Balance Accuracy and

provides an intuitive proof for its interpretation as a simultaneous lower bound for the average

per class recall and average per class precision. Results from comparison studies show that

models chosen by maximizing the training class balance accuracy consistently yield both high

overall accuracy and per class recall on the test sets compared to the models chosen by other

criteria. Simulation studies were then conducted to highlight specific scenarios where the use of

class balance accuracy outperforms model selection based on regular accuracy. The measure is
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then invoked in two novel applications, one as the maximization criteria in the instance selec-

tion biased sampling technique and the other as a model selection tool in a multiple classifier

system prediction algorithm. In the case of instance selection, the use of class balance accuracy

shows improvement over traditional accuracy in scenarios of multi-class class-imbalance data

sets with low separability between the majority and minority classes. Likewise, the use of CBA

in the multiple classifier system resulted in improved predictions over state of the art methods

such as adaBoost for some of the U.C.I. machine learning repository test data sets. The paper

then concludes with a discussion of the climbR package, a repository of functions designed to

aid in the model evaluation and prediction of class imbalance machine learning problems.
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CHAPTER 1. INTRODUCTION

An introduction of data mining and its applications will be discussed as a build up towards

our specific area of investigation. At that junction, research questions of interest will be estab-

lished and a brief outline of the thesis structure will be given upon the chapter’s conclusion.

1.1 Data Mining and the Operations Researcher

Operations research as a discipline was built around the idea that analytical reasoning is

the ideal method for evaluating alternatives. The process of selecting one alternative over an-

other involves framing the problem as a highly structured mathematical program where the

objective, decision variables, and constraints are made explicit and arranged in a manner that

facilitates the search for optimal solutions. With this approach, agencies have been able to

minimize costs, determine the best chemical proportions for gasoline blends, create the most

efficient schedules, and find feasible fleet assignments across tens of thousands of variables and

constraints (Rajgopal, 2001). The systematic organization of classical efficiency problems into

solvable frameworks has been so successful that there is a common tautology now that em-

phatically states “everything is an optimization problem”. As subscribers, we have no qualms

about this statement’s truth. Regardless of our ability, or inability to solve these mathemati-

cal programs, model formulation is only possible after a clear understanding of the objectives,

inputs, and constraints. As a testament to its importance, industrial engineers have dedicated

an entire step in the operations research work flow for this phase alone (Rajgopal, 2001). The

“Data Collection” step in the operations research approach is designated as one such point in

the work flow where relevant information is to be collected about the system, process, or event

of interest. Data collected on subjects of interest serve to characterize the inputs with the hope



www.manaraa.com

2

that later analysis will disclose important relationships between the characteristics. Questions

arise, Are certain geographical locations more prone to flight delays? Does the orientation of

the airport and the subsequent wind drift direction affect arrival times? Data driven solutions

to these questions are used to form the basis for not only the decision variables and constraints

of a program, but the inclusion or exclusion of parameters in the objective function, the key

differential for solution discrimination. Therefore beyond simply collecting data for record keep-

ing, there is a need to glean applicable knowledge from this information for the formulation of

optimization problems.

Figure 1.1 The Maynard’s Industrial Engineering Handbook visual representation of the op-

erations research approach. This work flow diagram describes the steps necessary

for systematic decision making and problem solving.

Sparked by human curiosity and made possible through human ingenuity, the data collec-

tion process has become streamlined in such a way that it is now possible to record information

across many subjects simultaneously and efficiently which increases the breadth of data. The

volume of stored datum combined with the speed in which it is collected and the variety of in-
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formation sources form the backbone of what industry has labeled “big data” (Stapleton, 2011).

It becomes immediately apparent that to gain guiding insight from such large, high velocity

data sets, the information contained must be processed in some automated fashion. It was this

same desire for automation that inspired the machine learning scholars of yesteryear to develop

the field of data mining to address the “big data” problems of their day (He, 2009). With an

alternative paradigm to data analysis than traditional statistical thinking, data mining was

introduced as a knowledge discovery tool that could, at the least, semi-automate the process of

discovering previously unknown patterns in the data without an a priori hypothesis (Olafsson,

2008). The solutions to this insight search process are unknown patterns which can manifest

themselves in two forms: as structured groupings of observations or relationships between in-

put, output data fields. Standard nomenclature denotes the search for natural groupings as

unsupervised learning tasks, whereas the investigation into relationships between explanatory

variables and a labeled qualitative response is called supervised learning. Returning back to

the operations research approach, given a domain context, the successful completion of these

tasks can grant the industrial engineer valuable discernment into the model formulation. For

example, we may find that analysis suggests that both geographical location and runway orienta-

tion are related to traffic delays; therefore, these effects should be accounted for our formulation

through the constraints, decision variables or objective function. Discussions of data mining

thus far have revolved around its use in conjunction with the data collection step to aid indus-

trial engineers in operations research tasks; however the applications of data mining can’t be

constricted to one field. From the author’s own consulting experience data mining techniques

have been sought after to differentiate between human and machine generated computer code,

group graduate students according to post-baccalaureate school satisfaction, and analyze online

text reviews of hotels for specific areas of competitive advantage.

1.2 A Gentle Introduction to Data Mining

Beyond general applications, for the purpose of this thesis, a more in depth discussion of data

mining is warranted. As mentioned previously, data mining tasks exist in two realms, where
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the learning process is either supervised and unsupervised. Unsupervised learning tasks aim to

gather observations into clusters, where the ideal outcome involves the formulation of groups of

observations with similar characteristics. In this scenario, the machine learning algorithm uses

the input data and subsequently the underlying data structure to determine the optimal cluster

membership for each case. This specific type of learning process can also be viewed as a search

for latent variables within the data structure, where both the location and number of groups are

unknown. Despite having objective data to guide the learning process, there is no way to verify

that the clusters drafted by the algorithm are indeed veritable, which lends credence to state-

ment that these techniques are “learning without a teacher” (Tibshirani and Freedman, 2009).

That said, practitioners often calculate measures which describe the cluster’s compactness and

separability; two intuitive measures that quantify the within cluster distances between obser-

vations and the between cluster distances, respectfully (Grira, 2005). Based on these measures,

a successful unsupervised learning task will create clusters that minimize the within-cluster

distances while simultaneously maximizing the between-cluster distances, resulting in clusters

that are tightly knit and spread apart. Popular algorithms include the distance based methods

like k-means and hierarchical clustering, and self-organizing maps which were derived from the

theory of topological maps (Tibshirani and Freedman, 2009). Common applications of unsu-

pervised learning involve market segmentation of customers, grouping of countries with similar

to economic output, and signal categorization.

Supervised learning differs from unsupervised learning because well-defined class labels ex-

ist for each observation. Given a set of characteristics for the observations, amongst them

the corresponding class label, classification models sift through the noise in the data set and

output relevant relationships between the characteristics and the class labels. Some of these

relationships can be expressed as intuitive patterns, like “after 5 pm the risk of a network log-in

being malicious increases two fold” or “ip addresses that attempt to log-in more than 10 times

at perfectly space intervals are 75% more likely to be machines compromised with a Trojan

virus than other client terminals”. To attain these rules, the first step is to partition the data

into training and test sets that contain 66.6% and 33.3% of the data, respectfully. With the

training set, a model is learned and classification rules are created. These newly developed
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classification rules are applied to the test data to assess the accuracy and robustness of the

model on observations outside of the original training set. This emulates model usage in the

real world. To determine the model’s level of accuracy, for each observation in the test set,

predictions are derived from the model rule set and are compared with its true class observed

from the data. The sum of the number of observations whose predicted class and observed class

match are divided by the total number of observations in the data set, which results in high

predictive accuracy for models that can recall more of the original observed class labels. This

ability to assess the model, as a consequence of having known class memberships, supervises

the learning process. As the more formalized branch of machine learning, its uses are pervasive

in all branches of science with broad, diverse applications too numerous to list. A survey of

applications can be found in Tibshirani and Freedman’s “Elements of Statistical Learning”.

Figure 1.2 A process flow diagram of the supervised learning sequence. After the data collec-

tion step, training data is used in conjunction with a machine learning algorithm

to create a prediction model. This model can now be used to forecast class mem-

berships of new, previously unforeseen observations.

1.3 Supervised Learning in the Presence of Class Imbalance

Supervised learning models are widely applicable and can offer substantial insights into

how the explanatory variables are related to the categorical response variable. The ability of
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models to discover useful patterns in data rely on some key assumptions that provide justifi-

cation for the use of statistical machine learning methods. One such assumption is that there

is an underlying deterministic mechanism that generates differences between the groups. This

assumption clearly disallows the possibility that the class labels are a sole result of chance.

Another fundamental assumption, and the main topic of this thesis, is the requirement that all

levels of the categorical outcome variable be evenly distributed. Deviations from this assump-

tion are exhibited when the one of more levels of the response variable are not represented at

the same relative frequency as the other levels. This scenario is aptly named, the class imbal-

ance problem (Japkowicz, 2000). Since all classification models seek to find boundaries between

classes, in cases where there is a departure from this assumption, meaningful boundaries are

hard to ascertain. Reduced to its core, class imbalance makes the very act of prediction more

difficult because of the added challenge to group delineation and demarcation (Longadge et. al,

2013). Aside from the added difficulty of partitioning the data space, when the target variable

has skewed class distributions, the fundamental intuition behind performance accounting is

attacked as imbalance increases. In these situations, performing assessment begins to transi-

tion from straight forward ratio calculations and branches into the realm of information theory

and matrix reduction. Classifiers are implicitly or explicitly designed to segment the classes

to optimize the total number of correctly specified observations. When the objective is merely

to maximize the number of observations, classifiers manifest a myopic view of the task which

guides them toward the prediction of classes that are over represented in the data set (Kumar

and Sheshadri, 2012). As an example, given ninety-eight observations with “positive” labels, a

single “negative” observation, and a single “neutral” labeled instance, if the latter two points

are not conspicuously separated in the data space then most classifiers would be well suited

to create a rule that classifies all observations as a positive group member. The learning rule

would achieve ninety-eight percent accuracy, but effectively provide no new knowledge if the

initial objective was to gain insight and demarcate boundary lines between the three classes.

While the value added of this classification model would be nil, our evaluation criteria returns

a value that suggests directly the opposite. In effect, when information about each class is inte-

gral, class imbalance severely hinders the effectiveness of traditional accuracy as a performance
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measure. This dissertation acknowledges these short comings and seeks to address the class

imbalance problem by introducing a novel alternative measure for model evaluation, one that

balances the precision and recall metrics across each class.

1.4 Thesis Structure

In this chapter we have discussed how data mining serves as a central part of the modern

operations research work flow. An overview of supervising and unsupervised learning was

presented, as well as an introduction to the class imbalance problem along with a discussion

of its effect on model evaluation. The remainder of this PhD thesis will be outlined in the

following sequence.

In chapter 2, we will review the background and literature relevant to the class imbalance

problem. It will begin with a formalization of supervised learning tasks within the context of

class imbalance. The class imbalance problem will be revisited, including an in-depth discussion

of its effects and current approaches. The chapter will conclude with supplemental discussions

on material relevant to work done in subsequent chapters. Chapter 3 will begin with a formal

proposal of the Class Balance Accuracy measure. Sections will be devoted to its definition,

proofs, properties, intuition, and a concluding comparison study highlighting its use as a model

evaluation criterion in practice. Where relevant, simulation studies will be discussed to provide

additional experimental evidence in support of the measure. In Chapters 4 and 5, two novel

applications of class balance accuracy are introduced. In both, Class Balance Accuracy is

used within the objective function, where in one the goal is to determine the selection of

subsets for instance selection and in the other to determine suitable class experts for a multiple

classifier system. Simulation studies for each method are conducted to show how the use

of our proposed measure can improve accuracy in the presence of non-separable multi-class

data sets. Afterward, Chapter 6 will walk through a software implementation of the methods

and procedures introduced to address the class imbalance problem. The chapter will provide

interactive documentation for the use of functions specifically designed to assist with model

prediction and evaluation in the presence of class imbalance. In conclusion, the final chapter

will summarize the key points of this PhD research and discuss future extensions.
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CHAPTER 2. REVIEW OF LITERATURE AND BACKGROUND

It is the intent of this chapter is to give the reader a sufficient background understanding

of the class imbalance problem and knowledge of the current state of the art.

2.1 Supervised Learning

2.1.1 Introduction

Let a m-dimensional vector of measurements be denoted by X, where each dimension is

identified as xj such that j = 1,...,m. In conjunction, let Y be a singleton element from the

set G, that contains, k, elements distinguished as g1 ,g2 ,gj ,...gk . Combined, the 2-tuple {X,Y}

form one complete data observation. A n-dimensional collection of these data observations,

{X,Y}n, form the complete dataset from which classification models are trained.

The supervised learning process consists of a structured search through the data space by

a chosen member a subset of models within, M, the superset of all available models. For

any given model, say Ml , when trained with some randomly selected subset of data, classifica-

tion boundaries are drawn based on the location of optimal separations that maximize some

algorithm based measure of separation (Tibshirani and Freedman, 2009). Commonly used as-

sessments of separation are Kullback-Leibler divergence and the Gini coefficient. Boundaries

derived from these models may consist of rule based criteria that delineate the classes according

to the values of the input variables or archetypal observations that serve as threshold limits

where all observations more extreme are deemed to be from another group extant in the data.

Due to the diversity of algorithm approaches for boundary detection, there can be a reasonable

expectation for a commensurate amount of heterogeneity in model interpretability. Generally,

as models increase in complexity, the effects of the explanatory variables are no longer extri-
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cable due to the lack of closed form partitionable formulas. Ideally, to preserve the individual

input variable effects, their contribution should be structured in such a manner that facilitates

easy differentiation, not unlike the concept of partitioning sum of squares in the linear model

framework (Kutner et.al, 2004). Interpretability aside, these boundaries established by the

models are used for the prediction of observations with complete records across all explanatory

variables, regardless of the existence of pre-observed class labels. Predictions are given as Ŷi,

corresponding to the ith observation’s prediction, where every label forecast is one of the pos-

sible groups contained in G. Intuitively, after the original data space has been demarcated, it

then degenerates leaving only the model derived boundaries as marker fields or zones. Each

zone corresponds to a specified label, wherein all observations contained within are classified

into the boundary specified group. Hence, at the conclusion of the supervised learning process,

the training data has been used to calibrate the model which results in estimated boundaries

for the various classes.

2.1.2 Classification Models

Statistical procedures and machine learning algorithms that perform supervised learning

tasks are aptly called classifiers. As a collective unit, classifiers each perform the same duties,

transforming input data into class membership predictions, yet individually, each technique is

grounded in theory derived from different assumptions and hypothesis. The work involved in

this thesis will revolve around six standard classification models: Classification and Regression

Trees, Random Forests, AdaBoost, Naive Bayes, Support Vector Machines, and Neural Net-

works. To establish a rudimentary understanding of the models and their approaches, a brief

introduction to each classifier will be provided. It is the intent of the introduction to familiarize

the reader with the theoretical underpinnings of each technique and highlight the diversity in

methodology.
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2.1.2.1 Classification and Regression Trees

Decision tree learning is all encompassing phrase that describes rule based partitioning

methods. Developed in the early 1980’s, classification and regression trees, like most machine

learning algorithms, had its usefulness spurned by the advent of high-powered, low cost com-

puting. These rule based techniques rely on the identification of homogenous “splits” derived

from subsetting along regions of the input variables (Tibshirani and Freedman, 2009). The dual

process of feature selection and split construction are the initial phases in the tree algorithm

design. Determining the variable order involves searching among the explanatory variables for

fields that will yield the most homogenous splits. A split’s quality is assessed through vari-

ety of metrics which can include information gain or entropy calculations (Ripley et.al, 2013).

Through the use of impurity metrics, each split’s level of homogeneity can be quantified. As

candidate fields are selected and included in the tree, the rule-based model grows, encompassing

a large yet nuanced path along the data space. Because it is a split-based partitioning method,

classification and regression trees paths can be easily interpreted. Each path represents a given

a set of scenarios that lead to a cluster of similar observations. Following along each path, the

model accounts for interactions between variables within the data space. As such, classification

trees are an excellent tool for the search of interactions between fields with the inside of an

exploratory data analysis framework. Recursive partitioning techniques, do not have any set

assumptions that must be followed. That said, the lack of assumptions to be explicitly satisfied

does not grant liberty from careful consideration to the application. As a result of the algo-

rithm’s construction, variables with a larger number of categories are preferred over variables

with fewer levels and when the model is allowed to grow in an unconstrained fashion, the prob-

lem of overfitting cannot be avoided. The phenomenon of overfitting occurs when the model

grows and complexity and reaches the point where the given data can be perfectly explained by

the model yet the complexity mars its ability to make generalized predictions (Izenman, 2008).

To protect against the scenarios machine learning practitioners take careful consideration to

examine the resulting rules from the tree algorithm. Moreover, to combat the overfitting issue,

pruning techniques have been developed that impose penalties for excessive growth beyond
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essential branches. Despite its relative simplicity, tree-based methods have been proven to be a

reliable and largely attainable technique for model based prediction (Tibshirani and Freedman,

2009).

Figure 2.2 A decision tree with rules for differentiating between cereal manufacturers based

on a product’s sodium content, calories from fat, and weight per serving.

2.1.2.2 Random Forests

Machine learning experts, borrowing from the field of statistics, realized that improvements

to tree based predictions could be easily accomplished by incorporating resampling methods,

in conjunction with model ensemble techniques, into the modeling framework (Breiman, 2001).

This simple modification increased the computational costs and complexity of the modeling

procedure, yet has been shown to increase predictive accuracy while maintaining resistance
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to overfitting. Dubbed, random forests, the algorithm gained notoriety after Leo Breiman’s

seminal paper where he described the process of randomly selecting from a fixed training set

and allowing only a subset of variables to act as candidates to entry. The algorithm forms a

random subspace wherefore features are searched through. As a result of the randomization

of both the features and the subset, diversity is induced within the subsequent trees that are

created. This process is akin to taking small randomly selected subsections of data along with

random subsets of features, fitting a tree model to each subset, and repeating the procedure

a predefined number of times. More formally, for some subset of training objects, N and fea-

tures, X, at each iteration choose a subset x of size |x| to be the number of input variables

to be used in each individual classifier such that |x| < |X|. Select |M | to be the number of

individual classifiers to be fit by the ensemble. For each classifier, m, we first randomly sample

|N | observations from the data, with replacement, and fit a tree classifier without any growth

constraints. Each model is given a single vote and the majority voting scheme is employed to

determine the class membership of each observation.

Random forests have been shown to be not only efficient on larger datasets, but also out-

perform other more sophisticated machine learning techniques (Breiman, 2001). Other benefits

of random forests include the lack of a need for cross validating the model to develop an un-

biased estimate of test set error and the ability of the model to return Gini based variable

importance rankings, along with a host of features that are documented in Breiman’s original

paper. Practitioners have been well served by the variable rankings returned by the random

forest procedure. They are a natural result of the tree based construction, are not limited to

only categorical or continuous variable types. To accomplish its variable importance ranking,

the decrease in Gini for splits under each tree is summed across all trees in the forest and

sorted according to the variables which have the largest decrease in Gini. Further advances in

the ideas of model aggregation, resampling and computation have spurned even more state of

the art techniques that rest on the same fundamental principles as random forests. One such

advancement has been the advent of adaptive boosting which will be discussed in the next

section.
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Figure 2.3 Random forest Gini based variable rankings for differentiating between cereal man-

ufacturers.

2.1.2.3 AdaBoost

Boosting is a machine learning approach that supposes the use of many “weaker” models,

i.e. low preforming classifiers, crowd sourced to create a single well-informed body of classifiers

that will improve predictions by accounting for the collective experience of the group (Freund,

1997). This concept is not unlike the random forest procedure, but is generalized to apply

to techniques beyond just classification and regression trees. At the crux, boosting provides

a systematic framework for fitting multiple classifiers, reweighting their value according to

performance on individual observations. Though the previous statement may imply that the

classifiers themselves are being reweighted, within the actual algorithm, the observations are

assigned an initial weight, say wi = 1/N . Each observation unsuccessfully classified has its

weight reinitialized before the next model fit. Key to the final predictions is the majority vote

formula:

G(x) = sign(
M∑

m=1

αmGmx) (2.1)

The function G(x) serves as an aggregator for the individual predictions of each classifier.

Figure 2.4 shows the Adaboost.M1 procedure as described by Tibsherani, Fredman and Hastie
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on page 339 of The Elements of Statistical Learning.

Figure 2.4 The Adaboost.M1 algorithm procedure.

Lastly, the authors show that the AdaBoost algorithm reduces to the optimization of an

additive model across an exponential loss function where solutions are found through the use

of a gradient descent search procedure. As a result of the gradient descent technique and

the structure of the problem, it has been shown that random classification noise can have a

negative effective on AdaBoost’s performance. None withstanding, AdaBoost methods perform

well in practice and give comparable results with other ensemble based methods (Tibshirani

and Freedman, 2009).

2.1.2.4 Naive Bayes

Probabilistic graphical models are relatively simple techniques that allow for the visual ac-

counting of probability augmented characterizations of networked events. These interconnected

events have their stochastic properties modeled through the use of conditionally independent

probabilities. This allows for the use of complex computations to be expressed and calculated

within the graph theory framework. An even more simplistic version of this technique, specif-
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ically applied to supervised learning, is the Naive Bayes classifier. As its name suggests, the

naive Bayes classifier is grounded in probability theory with Bayes rule at the crux.

Figure 2.5 A network graph of connected events. The full joint probability can be given by

p(x1 ∩ x2 ∩ x3 ∩ x4 ∩ x5) = p(x1) ∗ p(x2) ∗ p(x3) ∗ p(x4|x1x2) ∗ p(x5|x1x2x3).

Bayes rule allows for the estimation of conditional probabilities not directly observed using

information that can be directly measured and quantified. Under the independence assumption,

Naive Bayes classifiers exploit the factorization property the independence structure grants to

calculate conditional and joint probabilities of class memberships. Satisfaction of the indepen-

dence assumption also imposes a ‘naivety” assertion that gives equal weight to all features used

in the model. This has the unfortunate side effect of making Bayes classifiers susceptible to

increased signal noise caused by irrelevant features which may hinder performance (Rish and

Watson, 2009). Executing the Naive Bayes classification scheme requires the computation of

the maximum a posteriori decision rule which is calculated by selecting the class that yields

the largest posterior probability.
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Class(x1, . . . , xm) = argmax
g

p(G = g)
m∏
i=1

p(Xi = xi|G = g) (2.2)

The above equation quantifies the choice of class as the group membership that maximizes

the posterior probability as calculated by looking at the conditional probability of a feature

given a specific class. True to its Bayesian nature, the prior information is contained in the

p(G = g) term obtained from the observed class memberships in the data. Applying the

product across each of these observed conditional probabilities ranks the posteriors with respect

to the class of interest so that the one with the highest value can be selected. It has been

shown in the past that deviations from the independence assumption makes the numerical

estimates unreliable, but do not lead to permutations in the rankings of posterior probabilities

and therefore the final output, an estimated class membership, are often reliable predictions.

Due to its simplicity and efficiency, the Naive Bayes classifier even has an Apache Mahout big

data implementation that works for gigabyte and terabyte sized datasets (Rish and Watson,

2009).

2.1.2.5 Support Vector Machines

Hermann Minikowski, a German mathematician, is responsible for creating the “separating

hyperplane theorem”. This theorem purports that if given two disjoint, closed, convex sets,

say A and B, with properties such that one set is compact, then these two sets have a pair

of points p and q where one point lies in each set such that a hyperplane exists perpendicular

to the line segment between points p and q. Minikowski’s assertion shows that under certain

conditions there will exist an N-dimensional line segment that will separate convex sets. In ma-

chine learning, the exact conditions do not hold for every set, but the concept of searching for

a separating hyperplane motivated the creation of a technique called support vector machines.

This technique involves finding a solution to a quadratic programming problem of the form:

minw,b
1
2‖w‖

2

s.t.
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yi(w · x− b) ≥ 1

Where w is a normalizing vector, b is a constant, x is the value of the observation, and

y is the class of the observation. This quadratic program can be relaxed with Lagrangian

multipliers to make the problem more tractable. In practice, most boundaries between classes

are not separable due to overlap, which hinders the search for a support bound that maximizes

the distance between the support vectors. This can be compounded with the addition of non-

linear boundaries. To account for this scenario, what is known as a “kernel trick” can be applied

to the data by recasting the datum into a higher dimension and searching for a linear bound.

When the data is returned to its original dimension, the resulting higher dimensional linear

bound is now non-linear. This powerful and clever mathematical transformation has proven

to be extremely useful in practice (Tibshirani and Freedman, 2009). Support vector machines

have been shown to preform very well in practice for both binary and multi-class prediction

problems.

Figure 2.6 Sample linear and non-linear bound for a support vector machine.

2.1.2.6 Neural Networks

Originating to emulate the biochemistry of the brain, neural networks is one of the most

popular machine learning algorithms in use today. As a model, it attempts to focus on linear

combinations of the inputs and then characterize the response variable as a function of these

linear combinations. At the advent of its creation, neural networks became very popular,
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yet as it was studied in more detail some of its short-comings became more apparent. Neural

networks have an inability to handle mixed data well, have no integrated procedure for handling

missingness, can be biased easily due to outliers, do not scale well, aren’t interpretable and do

not handle noisy input variables with any degree of intelligence (Arel, 2010). Beyond those

shortcomings, neural networks also have a tendency to overfit to the existing training data

(Kotsiantis, 2007). As a result, the ubiquitous use of neural networks waned toward the end of

the 1990’s due to issues with its performance. Recently, big data repositories and extensions

of neural networks aptly named “deep learning” has brought on a resurgence of the technique’s

popularity. When given a sufficient amount of data, neural networks ability to model nuances

allows for the quick search through large feature spaces for patterns that traditionally not be

distinguishable. Within small data contexts, these same patterns often serve as noise, yet with

sufficient data these patterns give marginal improvements in accuracy which can be substantial

in the aggregate. Deep learning algorithms attempt to improve predictions by layering neural

network models into a machine that conceptualizes a hierarchy of features in the data (Arel,

2010).

2.2 Model Assessment Metrics

2.2.1 Model Validation

Model evaluation is crucial to the machine learning, data mining process because it is the

method by which the legitimacy of models are tested. As such an important phase in the

learning process, the evaluation must be simultaneously both objective and robust. To fulfill

the objectivity necessity, quantitative measures, be they information-theoretic based or matrix

reduction, are used to provide a singular numerical representation of the quality of a model.

Representing this model quality with error or misclassification rates is standard, just as well

as citing their inverse, accuracy. Scenarios with imbalance will be discussed later; however,

performing model evaluation for multi-class problems is not just a straightforward extension

of the binary case. Many techniques do not have multi-class extensions, particularly ones set

in an information theoretic frame. Therefore any measure utilized in a multi-class situation
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must be robust beyond the binary case. The following sections will introduce commonly used

metrics and discuss their use in practice.

2.2.2 Contingency Tables

The consortium of performance measures defined on 2x2 confusion matrices and their more

general kxk counter parts can be parsed based on how the off diagonal misclassification knowl-

edge is processed (Wei et.al, 2010). Measures derived from information theory treat the actual

class as a model input and their corresponding predictions as output. The classifier, acting as a

communication channel between input and output, allows for the use of information theoretic

tools which seek to characterize the amount of entropy or information loss in a given confusion

matrix (Moreno and Albacete, 2010). In essence, the confusion matrix is acting as a random

variable and its information content measured accordingly. These measures usually afford a

high degree of matrix discrimination, which serves well to detect differences in misclassification

rates from similar matrices, an asset when class distributions are skewed in favor of one class.

Unfortunately the nature of information theoretic derivations, which rely heavily on non-trivial

differential entropy, make extensions of these measures difficult to construct as supported anec-

dotally by their scarcity in the multi-class prediction assessment literature. The other branches

of measures rely on confusion matrix reduction and transformation to glean misclassification

information (Moreno and Albacete, 2010). Individual elements and sums are manipulated to

reduce the k times k matrix entries into a single number that represents the classification accu-

racy. This simplicity often comes with a cost, as information loss is inevitable when reducing

a kxk table into a single number (Chauvin et.al, 2000).

We will briefly discuss the some of the more common measures applied to two-class and

k-class prediction. Let Ck denote a confusion matrix or the contingency table of actual class

labels by their model predictions, with cij representing the number of cases with true label i

classified into group j. A sample construction of a 2x2 confusion matrix is given in Table 2.1.
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Predicted

Class 1 Class 2 Total

Actual Class 1 c11 c12 c11 + c12
Class 2 c21 c22 c21 + c22
Total c11 + c21 c12 + c22 N

Table 2.1 A 2x2 Confusion Matrix denoted as C2.

2.2.3 Two-Class Evaluation Measures

Accuracy As the current de-facto accuracy measure, overall Accuracy is simple to calculate

and interpret. Within a contingency table, successfully classified observations appear along the

diagonal. Accuracy, therefore, is simply the proportion of correctly classified observations

divided by the total number. Following the notation in Table 2.1, Accuracy is defined as:

Accuracy =
c11 + c22

c11 + c12 + c21 + c22
(2.3)

Recall, Precision, and the F-measure Despite being easily attainable, this 3-tuple of

measures is less commonly used. As per Table 2.1, classifier Recall is calculated from the number

of correct Class 1 matches divided by the total number of actual Class 1 cases. Similarly,

Precision aptly describes how precise a model is by dividing the number of correct Class 1

matches by the total number of predicted Class 1 instances. The F-measure supplements them

by reducing both measures into a single number by producing the harmonic mean between

Precision and Recall. The usefulness of these measures has largely been restricted to document

retrieval and similar applications. Their formula is as follows:

Precision =
c11

c11 + c21
(2.4a)

Recall =
c11

c11 + c12
(2.4b)

F −measure =
2 ∗Recall ∗ Precision
Recall + Precision

(2.4c)

Sensitivity and Specificity Reporting the sensitivity and specificity of a laboratory di-

agnostic test is a generally accepted practice in the medical literature because of their direct
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relation to type I and type II error. Sensitivity is identical to the Recall measure discussed erst-

while and is calculated for Class 1. Specificity judges a classifier’s ability to correctly identify

Class 2 instances. To avoid misleading conclusions, both numbers are reported when assessing

testing procedures. At this time, aside from averaging across each class, no well-established

multi-class generalization exists. Explicitly stated the formulas for Sensitivity and Specificity

are:

Sensitivity =
c11

c11 + c12
(2.5a)

Specificity =
c22

c21 + c22
(2.5b)

ROC and AUC Receiver Operator Characteristic (ROC) curves and the Area Under the

Curve (AUC) are common measures in medicine, machine learning, and a host of other fields

(Arun and Sheshadri, 2012) that want to take advantage of the well behaved statistical prop-

erties and leverage the graphical nature of the technique. Unlike the previously mentioned

techniques, ROC curves are not defined on a single confusion matrix but on the class probabil-

ity estimates. In combination with the probability estimates, if given a set probability threshold

value, a model’s sensitivity can be plotted on the y-axis against the false positive rate creating

the curve. Naturally, the area under the curve could serve as a measure of model quality, since

at perfect accuracy both ROC axis measures are maximized suggesting that larger areas are

superior. This single number reduction has prompted hopeful researchers to seek meaningful

multi-class extensions of the AUC measure. One such extension, the Volume under the Surface,

has been derived but was shown to be particularly unwieldy (Moreno and Albacete, 2010). It

wasn’t until Hand’s work in 2009 did the entire foundation of using AUC as a measure become

suspect. Hand boldly states that “...using the AUC is equivalent to using different metrics to

evaluate different classification rules.” Recently other authors have cited his work and published

extensions or proposed their own alternative solutions for AUC’s incoherency.
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2.2.4 k-Class Evaluation Measures

Matthew’s Correlation Coefficient First introduced in 1975 by Brian W. Matthews for

the 2x2 case, this measure has been carefully studied and shown to have connections to the χ2

distribution (Chauvin et.al, 2000). The measure has some other notable characteristics, such

as an intuitive [-1,1] range where the bounds represent perfect misclassification and perfect

classification, respectively. MCC calculates a value of 0 for confusion matrices that indicate the

classifier preformed the classification randomly. Findings have discussed MCC’s relationship

with Confusion Entropy, a measure discussed later, have been explored for fruitful results

(Jurman and Furlanello, 2010). Though MCC has been gaining more traction as one of the

best binary classification task measures, how it performs in multi-class settings with unbalanced

groups has not yet been well studied. The formal expression is as follows:

MCC =

k∑
i,l,m=1

ciicml − clicim√√√√ n∑
k=1

(
n∑

k=1

clk)(
k∑

f,g=1
f 6=k

cgf )

√√√√ k∑
i=1

(
k∑

i=1
cil)(

k∑
f,g=1
f 6=k

cfg)

(2.6)

Relative Classifier Information RCI is an information theoretic approach designed ex-

pressly to summarize how distinctly classes have been demarcated (Wei et.al, 2010). This

measure has a deceptively intuitive range of [0,1] where large values indicate better classifica-

tion performance; however, the measure’s construction does not account for actual accuracy
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only the uniformity of the predicted classes. Stated explicitly, the formula for RCI is given as:

RCI =
Hc

Hd
(2.7a)

Hd = −
n∑

i=1

n∑
i=1

cil

n
log(

n∑
i=1

cil

n
) (2.7b)

Ho =
n∑

j=1

n∑
k=1

ckj

n
Hoj (2.7c)

Hoj = −
n∑

i=1

cij
n∑

k=1

ckj

log(
cij

n∑
k=1

ckj

) (2.7d)

Hc = Hd −Ho (2.7e)

Confusion Entropy Continuing within the information theory framework, Wei et.al. de-

fine their measure, Confusion Entropy, on multi-class confusion matrices by focusing on all

available information contained in the off diagonal entries. As a result of their careful deriva-

tion, they created a measure that discriminates among matrices better than any previous mea-

sure to date (Jurman and Furlanello, 2010). The resolution of Confusion Entropy’s separations

is so pronounced that the measure values can’t assign a unique value to all cases that represent

random classification like its MCC counterpart. For this entropy measure, small values repre-

sent less information loss and better classification, and in practice this fact must be kept in the

forefront because of its counterintuitive nature. The Confusion Entropy is defined as:

CEN =

n∑
j=1

Pj

∑
k=1
k 6=j

h2(n−1)(P
j
jk) + h2(n−1)(P

j
kj) (2.8a)
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hb = P (x)logb(P (x)) (2.8b)

P j
ij =

cij
n∑

k=1

cjk + ckj

(2.8c)

P i
ij =

cij
n∑

k=1

cik + cki

(2.8d)

Pj ij =

n∑
k=1

cjk + ckj

2
n∑

k,l=1

ckl

(2.8e)

P i
ii = 0 (2.8f)

Balanced Accuracy Balanced Accuracy is the Recall for each class, averaged over the

number of classes. As an assessment tool it is intuitively simple, the predictive quality is

measured for each class independently and aggregated. Balance accuracy derives all of its

information from the diagonal elements and the row sums.

Balanced Accuracy =
c11

c11+c12
+ c22

c21+c22

2
(2.9)

(2.10)

G-Mean Similar to Balanced Accuracy, the Geometric Mean focuses only on the Recall of

each class. What differentiates this measure from balance accuracy comes from the way the

class recall is aggregated; multiplicatively instead of additively across each class.

G−Mean = (Πi=1ri)
1
k (2.11a)

ri = Recall for Group i (2.11b)

The multi-class measures show much more promise than their 2x2 counterparts with regards

to practical application in the presence of imbalance, yet the field is still open for measures

that can provide simplicity, are mathematically coherent and extendable beyond two classes.
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2.3 Background and Formalization of the Class Imbalance Problem

In this section the class imbalance problem will be formalized and followed with a discussion

of its effects on supervised learning tasks.

2.3.1 Formalization and Definitions

Suppose for a given dataset, {X,Y}n, we recall that the Y n component is a n-dimensional

collection of singleton elements from the set G, whose units are distinct labels g1 ,...,gk . Here

we introduce the set P, a container for the proportions of each class distribution. In similar

fashion to the erstwhile defined sets, the elements of P are denoted as p1 ,p2 ,pj ,...pk . Each pk

proportion has a value that ranges from 0 to 1.

Classical machine learning algorithms assume the response variable has an equal number

of observations within each class. The multi-class imbalance problem can be stated simply as

any deviation from this assumption where at least one class proportion pi is not equal to the

other proportions when k > 2. It is obvious that in practice, most if not all tasks will exhibit

imbalance due to the inability to control the outcome of a model, experiment or procedure. It is

true however, that since data mining tasks involve the development of the model ex post some

procedure, and it is possible to select an equal number of observations of each class as long

as the researcher is comfortable ignoring observations. Imbalance can also occur in instances

where limitations are due to collection of data due to cost or privacy. Returning to our previous

thought, class imbalance, according to its strict definition, occurs frequently in practice, and

yet does not have much effect on the outcome unless the imbalance reaches some threshold.

Unfortunately, it is at this junction where the objectivism of defining class imbalance departs.

Because imbalance can occur at varying degrees, there is no set standard wherefore we can

definitively say that the imbalance within a class variable is indeed a problem. Currently, at

best we can hope for the development of a threshold value that will indicate if a response subset

suffers from class imbalance to such a degree that it will have some impact on the modeling

process (Japkowicz, 2000). At this point in time there is no such indicator.

None withstanding, despite there not existing a well-established cut-off, previous publica-
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tions have established definitions for two common imbalance scenarios (Wang and Yao, 2012).

For any multi-class problem, a “multi-minority” case is one where a single class has a signif-

icantly larger proportion than the average size of all other classes. The converse situation is

where a single class has a significantly smaller proportion than the average size of all classes.

This is deemed the “multi-majority” case. This situation can be formalized as pmin << p where

p is the average proportion across all classes. Likewise for the multi-minority case pmaj >> p

where p (Wang and Yao, 2012).

Figure 2.7 Multiple minority and multiple majority imbalance scenarios.

Wang and contributing authors point out that both forms of imbalance negatively affect

both overall and per class performance. They found that multi-majority cases to be the more

harmful of the two, hindering common data based imbalance solutions, ultimately leading to

overfitting issues. In addition, when multiple minority classes exist, random undersampling

greatly reduced the majority class performance. In the next section we will discuss the effects

of class imbalance in more detail.
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2.3.2 Effects of Class Imbalance

Class imbalance influences data mining tasks by proxy. In the presence of imbalance, algo-

rithms can be initialized, their procedure will run, and converge can be met; therefore, the effect

of imbalance are largely symptomatic. Despite a non-terminal prognosis for models trained un-

der imbalanced distributions, unequal class distributions exacerbate already troublesome data

mining issues such as over-shadowing minority classes when there exists concept complexity,

introducing additional training bias when building models with a small sample sizes, and in-

validating commonly used accuracy measures (Japkowicz, 2000).

2.3.2.1 Concept Complexity

When majority and minority classes exhibit a low amount of separability within the feature

space, the data is said to express a high degree of concept complexity. The idea of separability

communicates the degree in which observations share similar values along fields in the feature

space. With each similar value, learning techniques must search an alternative variable or linear

combination of fields to separate the observations. In the presence of imbalance, this overlap

creates blurred boundaries between the classes (Drummond and Holte, 2005). When combined

with an accuracy driven algorithm, it creates a situation where the minority class observations

can be ignored (Drummond and Holte, 2005; Wang and Yao, 2012; Dongre and Malik, 2013).

This will be a critical theme within this body of work.

As a generalized term, concept complexity also describes the linearity of the class bound-

aries. Linearly separable boundaries are the holy grail of modeling bounds. Nearly all algo-

rithms, either search based or statistically grounded, can find an optimal linearly separable

plane where groups can be partitioned (Tibshirani and Freedman, 2009). These bound also

happen to be easily interpretable with explanations that are conducive to creating classification

rules. Unfortunately, when bounds are non-linear, the “classification bounds” for groups can

take any shape or form, which increases the computational effort required to carve boundaries

to some sensible approximation. A further complication can occur when these clusters of mi-

nority observations do not reside in one centralize location within the data space. Scattered
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pockets of disjoint minority classes can exist with non-linear bounds and in situations where

the overlap of majority classes seep into the minority class segments algorithms err towards

ignoring the minority class segments (Wang and Yao, 2012).

Figure 2.8 Both figures are suffering from concept complexity. On the left is a dataset with

small disjoints, while the figure on the right suffers from significant class overlap.

2.3.2.2 Small and Noisy Data

Noisy data can be described as data that have been gathered in some ill-prepared manner,

incorrectly labeled, or contain features that provide spurious information. Minority class ob-

servations, which already exhibit sparse representation, are especially prone to noise by biasing

the boundaries away from their true limits. As a consequence of noise, classes that originally

may be linearly separable now increase in concept complexity and bring along with it all the

subsequent ramifications (Garcia et.al, 2007).

It is intuitive that the fewer data points in the datum, the easier it is to separate groups,

the faster algorithms will converge and higher the likelihood for the boundaries to be linearly

separable; however, as a consequence of having a reduced sample sizes, group demarcations

found will not be generalizable. With imbalance extant, the metes created to differentiate the
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minority class observations may not approximate the true boundaries because of sampling bias.

2.3.2.3 Evaluation

As discussed previously, model evaluation is an integral part of the data mining process.

When comparing and contrasting the model predicted class memberships with the actual class

groupings any measure utilized should consider both the overall accuracy of predictions along

with the individual class recalls. In the presence of imbalance, accuracy measures that focus on

overall performance will have a tendency to ignore minority classes because as a group they do

not contribute much to the general performance (Zeno et.al, 2011). As a classic example, given

ninety-eight observations with “positive” labels, a single “negative” observation, and a single

“neutral” labeled instance, if the latter two points are not conspicuously separated in the data

space then most classifiers would be well suited to create a rule that classifies all observations as

a positive group member. The learning rule would achieve ninety-eight percent accuracy, but

effectively provide no new knowledge if the initial objective was to gain insight and demarcate

boundary lines between the three classes. While the value added of this classification model

would be nil, our evaluation criteria returns a value that suggests directly the opposite. In effect,

when information about each class is integral, class imbalance severely hinders the effectiveness

of traditional accuracy as a performance measure.

Unfortunately, it is still common practice for scholars to report measures that account only

for the overall performance of the classifier (Galar et.al, 2012). This is a result of a lack

of consensus for the choice of measures in the presence of skewed class distributions. Many

measures lack the ability to be generalized to the multi-class case, which hinders their use

beyond binary classification and therefore are invalid for multi-class imbalance problems. As

a further consequence of complexity, implementations of non-matrix reduction techniques are

uncommon and restricted to a few programming languages. Therefore there is a gap in the

literature for any measure that can account for accuracy across all classes, is robust to the

cardinality of the class set, and possesses a form that is easily implementable.
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2.4 Current Approaches for Class Imbalance Prediction

Previous investigations into imbalance have shown that the effects of skewed class distribu-

tions are a function of the degree of imbalance, the amount of overlap between the minority

and majority classes, the overall size of the data and the classifier itself (Wang and Yao, 2012;

Japkowicz, 2000). Methods to address class imbalance attempt to do so by mitigating the in-

fluence of one of those four characteristics of the modeling process. These characteristics form

the basis for the two general approaches that involve either data space manipulation, algorithm

modifications or an amalgamation of both. This section we will discuss common approaches to

the class imbalance problem in more detail.

2.4.1 Data Methods

A straight-forward procedure involves rebalancing the class distributions through resam-

pling the data space. These methods involve either oversampling the minority class or under-

sampling the majority class. In their simplest form, oversampling and under sampling involve

the random selection of data observations already extant in the data. This has the consequence

of being computationally quick, however both can potentially and often do bias the datum in

unintentional ways. Oversampling the minority class has been known to increase the chances

of overfitting because observations within the minority class are exact replicas of one another.

Random undersampling does not have this effect, but can potentially discard useful obser-

vations. To account for the shortcomings, techniques such as synthetic minority oversampling

technique and selective preprocessing of imbalance data were introduced. SMOTE is a k-nearest

neighbor approach to minority class oversampling. The hope is that the overfitting problem can

be sidestepped by generating new instances from a random interpolation of existing minority

members. SPIDER is a hybrid technique that involves both over sampling the minority class

and under sampling the majority class through an intelligent two-phase process of identifica-

tion and preprocessing. The first phase begins with the identification of misclassified instances

using k-nearest neighbors. The second phase then decides whether to amplify minority class

instances, amplify the minority class instances and relabel majority class instances, or just re-



www.manaraa.com

32

label majority class instances. As a whole, there has not been an extensive survey of the effects

of data pre-processing on imbalanced data prediction. As classifier independent techniques,

resampling methods can be applied directly to the data set and used in conjunction with any

classifier technique which is a boon, yet it is an unfortunate circumstance that there does not

exists a single repository containing open source robust implementations of these techniques.

2.4.2 Algorithm Methods

Algorithm approaches to the class imbalance problem make use of ensemble techniques and

clever cost assignments for class observations. The latter, cost sensitive learning is a proce-

dure that reweights observations according to the relative cost of misclassification. Within the

context of class imbalance, minority class observations are given substantially higher misclassi-

fication costs than their majority class counterparts (Galar et.al, 2012). It is this reallocation

of misclassification errors towards the minority class the forces algorithms to account for them

with some form of equality. Some algorithms benefit by the direct incorporation of the cost

structure into their designs. In other instances, costs are incorporated ex post to determine

which modeling procedure performed the best with respect to minimizing the cost of misclassi-

fication. A major drawback to cost sensitive techniques become apparent through their need to

have misclassification costs clearly defined when in practice an objective and quantifiable cost

structure may not exist (Galar et.al, 2012). For example, in medical applications when trying

to make predictions across several different terminal illnesses, if we assume that the quality of

life is constant across each, the cost of misclassifying the patient into a rare terminal disease

as opposed to a common terminal illness is not directly identifiable.

The former of the two approaches involves the exploitation of model diversity to develop a

crowd sourced prediction of class memberships. Multiple classifiers are trained from the data

and combined using some standardized voting scheme to determine the final class estimate.

Ensemble techniques are often not used as standalone techniques for dealing with imbalance

problems as they were initially developed predominantly as prediction improvement routines,

however scholars have been able imbed misclassification costs into the ensemble framework for

positive gains in accuracy across the minority class which has spurred their use in the class
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imbalance literature (Galar et.al, 2012; Wang and Yao, 2012).

2.5 Data and Computing

The UCI Machine Learning Repository at the University of California at Irvine is home to

a collection of data sets used for the evaluation and testing of machine learning algorithms.

These data sets span across many academic fields such as engineering, epidemiology, business,

and biology. The datum in this repository exhibits many of the features, or better described

as shortcomings that data in the real world harbor. Centralized one place, the repository’s

data sets can suffer from data structure issues such as low statistical variation within fields and

improper formatting to more technical maladies such as high dimensional noise, missingness,

class imbalance, which can all be detrimental to the performance of algorithms trained on this

data. Because of the variety and diversity of the variance-covariance structures within these

data, the utilization of these data sets for machine learning algorithm validation offers a robust

picture into a technique’s performance, setting the UCI machine learning data repository as

the standard for which machine learning algorithms are vetted. Particular for this research, the

data sets chosen were specifically selected for their diversity with respect to class imbalance.

The data sets of interest were not only binary, but multi-class in nature and possessed various

forms of non-uniformity within the response variable’s class memberships. This allowed our

simulation studies to present results across a wide array of real-world scenarios. To augment

the data diversity further, a supplemental dataset, “diamonds” was added from the statistical

visualization literature. The diamonds data was compiled from http://www.diamondse.info/ in

2008 by then graduate student Hadley Wickham and contains both quantitative and categorical

variables. By careful consideration, the datasets used in this research and the results derived

from them should be extendable onto other modeling scenarios with similar data structures.

All statistical computations for this work utilize open-source software freely available in the

public domain. The primary programming languages used to produce this research were R

and Java. The R 3.0 64-bit software environment acted as the primary work horse for simula-

tion, algorithm, and measure implementation. In conjunction, the RStudio integrated develop-

ment environment capabilities were leveraged for its improved graphical interface, storage, and
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Sweave integration. Each machine learning algorithm used were called from their respective

pre-packaged implementations as downloaded from CRAN, the comprehensive R archive net-

work, which serves as a repository for publicly released functional implementations of statistical

procedures. The packages which contain the models explored in this research are cited in the

reference section. Lastly, to perform model based instance selection, Java implementations of

class balance accuracy and both the greedy addition and subtraction instance selection tech-

niques were created. Calculations and code compiling was shared across a variety of computers,

however the predominant analysis machine was a Windows 7-based computer with a i7-2600

quad-core processor with 16 GB of dedicated memory.
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CHAPTER 3. A GLIMMER OF HOPE FOR MULTI-CLASS

ACCURACY MEASUREMENT IN THE PRESENCE OF CLASS

IMBALANCE

Our discussions in Chapter 3 will include the motivation of this research work through a

guided tour of the shortcomings of current multi-class model evaluation metrics. Afterward,

we will formally introduce Class Balance Accuracy as an alternative performance indicator for

measuring classification error in the presence of class imbalance and vet its usefulness with

simulation results.

3.1 Introduction

Assessing classifier performance from a broad, overall perspective has traditionally served

data mining practitioners well, yet as the applications of data mining have become more ubiq-

uitous, machine learning algorithms have begun to be applied to scenarios that challenge their

fundamental assumptions. One such assumption requires that there be an equal number of

observations from each group in the target variable (Japkowicz, 2000). With respect to model

evaluation, a failure to satisfy this assumption prevents many commonly used metrics from pro-

viding meaningful insights into a model’s performance. When performing classification, there

is often a dual goal to be accomplished where we seek the successful partitioning of the data

space into pooled boundaries that differentiate classes and do so in a manner that minimizes

misclassification error (Galar et.al, 2012). When learning under imbalance, the tendency of

machine learning algorithms is to divide the data space in a way that maximizes the overall

classification rate irrespective of the intent to discriminate between groups. This can create a

scenario where a model with high overall accuracy may have very little contradistinctive power,
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and when the degree of imbalance is severe enough, there may be no value provided by the

model.

Accuracy measurements, when applied to multiclass prediction results, can be faced with

situations where they are unable to differentiate between multiple models. This is a conse-

quence of when measure formulas neglect off-diagonal information and only account for the

on-diagonal cells within a contingency matrix (Zeno et.al, 2011). The following figure is an

example of one such case. In the first plot, we have three groups graphed according to their

X and Y values. Within the range of 0 through 25 on the x-axis, we have 500 data points of

both blue and red hue. Between x-values 25 and 50, there are 500 red group observations and

100 blue group points. From 50 to 75 on the x -axis, there are 100 green observations and

500 red. Lastly, between the x-values of 75 to 100 we have an equal number of red and green

observations, both with 500 data points. In the second and third plots, we have two alternative

models: one that predicts every observation into the red group and another that creates a sep-

arate partition for each group. By construction, both models have the same overall accuracy

of 62.5%, which is derived from taking the 2000 correctly classified observations and dividing

them by the total number of observations, 3200; however, in only one of the two models can the

classes be discerned from the classifier boundaries. Though this example may seem extreme,

machine learning algorithms do indeed seek bounds that maximize overall accuracy therefore

the likelihood of attaining an all red straw model is not beyond reason. It should also be noted,

that if only one observation from either of the minority classes were to be relabeled as a red

observation, the all red model would have superior overall accuracy performance though it still

would not provide any new or useful information for differentiating between classes.

Alternative model performance indicators have been proposed for use in the presence of

class imbalance, yet many have undesirable properties which hinder their widespread use. As

mentioned previously, the formula for accuracy focuses solely on the diagonal entries omitting

relevant off diagonal information (Zeno et.al, 2011). Hence, accuracy should only be used in

situations where overall performance is important and the class distributions are uniform. An

intuitive alternative would be to average the accuracy of each class which has a formalized

name, Balanced Accuracy. Though the logic is sound, since the measure focuses only on
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Figure 3.1 A data visualization of all red and class partitioned models derived from the original

data set on the top, left. Both models have the same level of accuracy, 62.5%, but

clearly divide the data space differently. The Class Balance Accuracy for the all

red and class partitioned models are 20.8% and 50% respectfully.
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recall it will neglect how well the classifier is actually performing the predictions, i.e. its

precision. A loss in the measure’s discriminatory power is a direct result of this oversight, and

manifests itself when trying to compare two models with similar per class performance. The

use of Balanced Accuracy is not wide spread in the class imbalance literature, likely because

of the aforementioned shortcoming. The Geometric mean or G-Mean has received some use in

literature, but due to its multiplicative nature, algorithms that completely misidentify one class

will receive a G-Mean assessment value of zero. In multi-class, imbalanced learning tasks, this

level of hypersensitivity is too restrictive. Relative Classifier Information, a measure discussed

previously is inadmissible because of a hazardous quality were both perfect misclassification

and perfect classification return the same value. Other more traditional measures, such as

Sensitivity and Specificity are called “class dependent” and their use has been frowned upon by

the imbalanced data community (Weng and Pool, 2006). Furthermore, despite recent attempts

to extent AUC to k-class domain, the recent incoherency issues raised require any decisions

based on this measure to rightly be subject to additional scrutiny (Hand, 2009; Moreno and

Albacete, 2010; Yuan et.al, 2010).

At its crux, the search for an admissible k-class evaluation metric for imbalance tasks

revolves around finding a measure that is class independent, scalable to any number of classes,

incorporates off diagonal information, balances minority class sensitivity, all while maintaining

relative simplicity. It is here that we propose Class Balance Accuracy as a performance measure

suitable for use in the presence of multi-class imbalance.

3.2 Definitions, Properties and Proofs

We begin first with a generalization of the 2x2 confusion table. Again, allow Ck to denote

a kxk confusion matrix or contingency table of actual class labels aligned by their model

predictions, with cij representing the number of cases with true label i classified into group

j. A valid confusion matrix will constrain the model and the output classes to the same set,

therefore i, j ∈ G, where G denotes the set of all possible class labels. The cardinality of G,

|G|, will be the total number of classes, k. Ergo, i, j = 1, 2, ...., k. For multi-class classification

the number of classes, k, must be greater than or equal to 3. So under this construction,
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the confusion matrix is guaranteed to be a square matrix with an equal number of rows and

columns. Row and columns sums of a given index are attained by adding across all groups

of the remaining index. Therefore the number of actual cases in group i will take the general

form:

ci· =

k∑
j=1

cij (3.1)

Likewise, column sums will represent the total number of data observations predicted as

class j and have the form:

c·j =
k∑

i=1

cij (3.2)

The grand total of data observations, N , will be the summation of all matrix entries as

given by

N = c·· =
k∑

i=1

k∑
j=1

cij (3.3)

Due to the orderly, orthogonal assembly of the confusion matrix, the relevant classification

information is neatly arranged where diagonal elements contain the counts of properly classified

observations while off diagonal elements give not only the count, but location of the misclassi-

fication. Foreshadowing, it is therefore wise for any measure constructed on such a matrix to

utilize on and off diagonal knowledge. The results of our construction are given in Table 3.1 as

an example of a 3x3 confusion matrix.

3.2.1 Definition

For any Ck confusion matrix, Class Balance Accuracy is defined as

CBA =

k∑
i

cii
max(ci·,c·i)

k
(3.4)
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Predicted

Class 1 Class 2 Class 3 Total

Actual Class 1 c11 c12 c13 c1·
Class 2 c21 c22 c23 c2·
Class 3 c31 c32 c33 c3·
Total c·1 c·2 c·3 N

Table 3.1 A 3x3 Confusion Matrix denoted as C3.

A deconstruction of the above simplifies into:

CBAi =
cii

max(ci·, c·i)
(3.5a)

CBA =

k∑
i
CBAi

k
(3.5b)

A high level view of Class Balance Accuracy’s construction is given in Eq. 3.4 where

CBA is expressed as an overall accuracy measure built from an aggregation of individual class

assessments. Individual accuracy assessments are calculated then normalized by the number

of classes extant. These elements, which form the basis for the numerator, are expressed in

Eq 3.5a. Information on the number of correctly predicted cases, contained in the diagonal

elements, is normalized by either the total number of observations predicted to the class or the

actual number of observations in that class, decided by the two greater of the two.

From its construction, CBA utilizes three core elements from each class within the contin-

gency table: the total number of correctly classified cases, the total number of cases predicted

into that class, and the total number observed in the data. Intuitively, for each class the off-

diagonal row and column elements are reduced into a single sum. These singular sums form the

basis for the denominator of the per class accuracy contributions. At the bottom of each per

class ratio, the maximum of the row or column sum is chosen resulting in either the Recall or

Precision to be the estimate of class accuracy. As a consequence, selecting the larger of the two

as the denominator provides the most conservative estimate of accuracy that can be achieved.

For each class, the per class Recall or Precision are aggregated and treated as the numerator
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for the final ratio calculation. By using the total number of classes in the dataset as the divisor

in the calculation we guarantee equal weight contributions for all classes. In the end, Class

Balance Accuracy acts as a measure that independently accounts for the ability of the model

to precisely recall observations from each group within the target variable.

3.2.2 Interpretation and Proof

Intuitively, as a measure, Class Balance Accuracy seeks to balance the Precision and

Recall for each input class. When there is an imbalance between the Precision or Recall, a

conservative process is employed such that the lower of the two measures is selected as the

representative of that class’s accuracy. Indeed, as the accuracy across each class is calculated,

the definition of model error for any given class could be based on the model’s inability to

recall members of the class or overly imprecise predictions. The calculations for each class

maintain their interpretations, however once averaged, the understanding that the measure

provides becomes less lucid. Despite this, class balance accuracy does maintain a reasonably

simple and clear meaning as a performance guarantee measure. In this capacity, class balance

accuracy serves as a threshold for which the average recall and average precision of a model

will not breach below. This assertion is established by the following claim.

Definition Define the following alternative forms for Class Balance Accuracy, Average Recall,

and Average Precision respectfully as,

CBA =

k∑
i

cii
max(ci·,c·i)

k & R̄ =

k∑
i

cii
ci·

k & P̄ =

k∑
i

cii
c·i

k

Theorem 3.2.1 CBA ≤ min(R̄, P̄ )

Proof By definition,

ci· ≤ max(ci·, c·i) & c·i ≤ max(ci·, c·i)

Taking the reciprocal and dividing by cii,

cii
ci·
≥ cii

max(ci·,c·i)
& cii

c·i
≥ cii

max(ci·,c·i)
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Summing across all classes and dividing by the number of groups yields,

k∑
i

cii
ci·

k ≥

k∑
i

cii
max(ci·,c·i)

k &

k∑
i

cii
c·i

k ≥

k∑
i

cii
max(ci·,c·i)

k

By definition,

R̄ ≥ CBA & P̄ ≥ CBA

Therefore, by the identity property of minimums,

CBA = min(CBA,CBA) ≤ min(R̄, P̄ )

The proof of the claim begins with a statement that each per class row and columns sum are

less than or equal to the maximum of those two numbers. Each side is then divided by the total

number of correct observations, and the reciprocal is taken. This simultaneously reverses the

inequality and defines the per class recall and precision contributions. It is at this point in the

proofs development that the implication is obvious. On the right side of each inequality, Class

Balance Accuracy selects the measure with the lowest value as the representative accuracy. In

doing so it creates a conservative estimate of that class’s contribution to the overall accuracy.

To complete the proof, we sum across the k number of groups and then divide by said number.

With the complete definitions of average precision and average recall, the relationship shows

that each measure will be greater than or equal to the class balance accuracy value. To combine

these two separate inequalities the identity property of minimums was used to show that the

smallest of the average precision and average recall will be greater than or equal to the Class

Balance Accuracy. Proof for the measures interpretation shows that for any kxk confusion

matrix, Class Balance Accuracy is a simultaneous lower bound for both the average Recall

and average Precision. Therefore, Class Balance Accuracy can be interpreted as a performance

guarantee metric where the average precision and average recall for a model are bounded below

by the calculated CBA value. As an evaluation tool, CBA creates an overall assessment of

model predictive power by scrutinizing measures simultaneously across each class in a conser-

vative manner that guarantees that a model’s ability to recall observations from each class and

its ability to do so efficiently won’t fall below the bound. We also state, without proof, that
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class balance accuracy the greatest lower bound for the average precision and average recall

across each group. All things considered, as a multi-class measure it accounts for overall in her

class performance in a conservative and intuitive manner.

As a more stylized discussion of CBA’s classification assessment, the reader may imagine

a family of acrobats who specialize in high risk tight rope acts. It is clear the success of each

individual is integral to the preservation and happiness of the group as a whole, hence we

must account for each member independently. That said, as a unit they must all perform

well for the show to be a triumph. So at any given performance, one tight rope houses all

members, each individually attempting to stay at equilibrium as they walk across. This is

akin to the classifier recalling as many observations as possible from a given class and doing

so with a high level of precision, effectively balancing these two equally important metrics.

As each member attempts to walk across carefully, and the classifier analogously attempts to

group observations into each class, Class Balance Accuracy will ultimately rank the classifier

highly if it can enable each individual to make it across while keeping both sides of the beam

balanced. Some classes, often the majority ones, will be biased towards higher recall and low

precisions, while minority ones are likely to suffer from the opposite effect of low recall, but high

precision. This conceptualization highlights the fact that each per class accuracy contribution

can be represented by a left leaning recall deficient or a right tilted precision problem. When

viewed as a whole, each member is slightly tilted in different directions, but all are working

towards the singular goal of making it across safely. By accounting for the effect of each class,

CBA contrasts with traditional accuracy measures that simply attempt to ensure the “most

important” family member makes it across, notwithstanding and possibly to the detriment of

everyone else.

3.2.3 Properties

For further investigation into the properties of class balance accuracy, we must relate how it’s

functional form translates the information found in contingency matrices into error estimates

under a variety of scenarios. However, before that discussion can begin, a few concepts must
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be introduced.

Definition Discriminancy For two measures f and g on domain ψ, let P = {(a, b)|a, b ∈

ψ, f(a) > f(b), g(a) = g(b)} and Q = {(a, b)|a, b ∈ ψ, g(a) > g(b), f(a) = f(b)}. The degree of

discriminancy for f over g is D = |P |
|Q| .

Defined by Huang and Ling, discriminancy and consistency can be used to compare how

to measures evaluate information. Discriminancy quantifies the differences in range between

two measures as a ratio of the total number of possible output values of the two measures.

Specifically applied to contingency table analysis, one measure has more discriminancy over

another measure when it’s range of values over the same set of contingency tables is larger.

The following figure elucidates the definition of discriminancy for five matrix reduction based

measures: Balanced Accuracy, Regular Accuracy, Class Balance, G-Mean, and F-Score. In

figure 3.2, the five constructed matrices are hypothetical representations of the predictions of

five modeling outputs. Summing across the rows informs us that there are 50 observations in

class 1 and 100 observations in class 2, which yields an imbalance ratio of 2 to 1, majority

to minority. Under each table, we have the value of the measure calculated from the table

above. Hence for the first table, the Balanced Accuracy is equal to 60% while the F-Score

for the same table is 44.4%. From the measure output values for each table, we can directly

assess the degree of discriminancy for each measure. Balance Accuracy, which accounts for

the recall over each class has the weakest ability to discriminate between different contingency

matrix inputs and of the five matrices it can return only two distinct values. Three of the five

metrics, Regular Accuracy, G mean, and F-score are able to return for distinct values across

five different matrices. It is only Class Balance Accuracy’s ability to account for both row and

column sum simultaneously that allows it to discriminate between all five matrices.

Definition Consistency For two measures f and g on domain ψ, letR = {(a,b)|a,b ∈ ψ, f(a) >

f(b), g(a) > g(b)} and S = {(a, b)|a, b ∈ ψ, f(a) > f(b), g(a) < g(b)}. The degree of discrimi-

nancy for f and g is C = |R|
|R|+|S| , where 0 ≤ C ≤ 1.

Measure consistency describes to what degree two evaluation metrics move in tandem across

different inputs. Figure 3.2 highlights that difference between measure values when calculat-
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ing the third and fourth matrices is positive for three of the five measures. Balance accuracy

cannot discriminate and has no change, while the geometric mean actually decreases. In this

scenario, regular accuracy, Class Balance Accuracy and F-Score all exhibit consistency with

one another. A comparison between the predictions between matrices C2
c and C2

d point to a

difference in the precision of the minority class predictions and the mount of total recall for said

class. The level of consistency for these measures indicate that each ranks models higher that

can predict minority classes with high precision over the indiscriminate allocation of majority

class observations into the minority group.

When taken together, the degree of discriminancy of a measure will determine the cardinal-

ity of its range which directly relates to, but is not a function of, how consistent the measure

is with other metrics. Ultimately, both properties dictate how a measure will rank order con-

tingency matrices and it should be noted that the differences between the measures is largely

an effect of how off-diagonal information is processed. It is the exploration of how information

is processed that motivates the use of the measure evaluation taxonomy developed by Sokolova

and Lapalme in the following section.

The measure evaluation taxonomy is a structured framework for understanding when the

eight suggested invariance properties were tested for CBA and the other three competing multi-

class measures. From a high level standpoint, these invariance properties can offer a quick view

into how a measures is processing on and off diagonal information. Table 3.2 is a recreation

of Sokolova’s results. Given the similarity of its pattern to the other measures in its class, the

validity of Class Balance Accuracy as a bona fide, unique accuracy measure should become

more apparent. CBA’s construction allows it to process information in a similar fashion to the

other, more complex information theoretic measures.

As a short walkthrough, Sokolova’s properties will be discussed within the context of Class

Balance Accuracy. The first invariance property introduced is one that tests whether a mea-

sure is invariant under an exchange of positive and negative classes. This is akin to simply

switching the labels, and it should only be expected for a measure to be invariant to the class

name. Properties 2 and 3 describe scenarios where the true positive or true negative counts are
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changed. Naturally any valid measure should be able to detect a change in either of the true

counts. As so, CBA is non-invariant in this case. Properties 4 and 5 describe changes in the

false negative and positive counts. Here Class Balance Accuracy is quasi-invariant to changes

on the off diagonal elements since the accuracy value doesn’t change until the direction of the

difference between the row or column sum changes. Balance between Precision and Recall are

forthright, CBA is not interested in the specific counts within each off-diagonal cell. The other

multi-class measures explicitly take into account these counts, which add to their discrimina-

tory power. The last three properties all assess a measure’s ability to deal with multiplicative

changes in sample size, either uniformly, by row or by column. CBA naturally quantifies this

information, and as Sokolova et.al. point out, invariance on these properties suggest a measures

ability to assess performance on different classes.

Invariance Property I1 I2 I3 I4 I5 I6 I7 I8
Binary Classification

Accuracy - ∆ ∆ ∆ ∆ - ∆ ∆

Precision ∆ - ∆ - ∆ - - ∆

Recall (Sensitivity) ∆ - ∆ ∆ - - ∆ -

Fscore ∆ - ∆ ∆ ∆ - ∆ ∆

Specificity ∆ ∆ - - ∆ - ∆ -

AUC ∆ ∆ ∆ ∆ ∆ - ∆ -

Multi∆class Classification

CBA - ∆ ∆ ± ± - ∆ ∆

MCC - ∆ ∆ ∆ ∆ - ∆ ∆

CEN - ∆ ∆ ∆ ∆ - ∆ ∆

RCI - ∆ ∆ ∆ ∆ - ∆ ∆

Table 3.2 Invariance properties for performance criteria across binary and multi-class clas-

sification tasks. Let “-” represent invariance, “∆” denote non-invariance and “±”

highlight quasi-invariance.

Class Balance Accuracy shares many of the invariance properties of other multiclass perfor-

mance metrics, which besides overall accuracy are all information theory based. CBA’s ability

to detect changes in the false negative and false positive counts separate it from overall accu-

racy. This table highlights that despite being a matrix reduction technique, which have been

historically less complex than information theory base metrics, class balance accuracy achieves

a comparable level of discriminancy while remaining simple and intuitive.
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3.3 Calculation Examples

At this point, through example we would like to begin bridging Class Balance Accuracy’s

theoretical construction and practical application. The hope is to provide meaningful 2x2 and

3x3 confusion matrix examples that will help solidify CBA’s validity and aid in the interpre-

tation of its values. The discussion will begin with a comparison of Class Balance Accuracy

and Regular Accuracy for the 2x2 case, and proceed to compare its calculations against the

multi-class measures for the 3x3 instance.

3.3.0.1 Comparison between Accuracy and Class Balance Accuracy under 2x2

Class Imbalance

Consider the standard 2x2 matrices displayed in Table 3.3. Summing across the rows, note

Class 1 as the majority group with 60 observations and Class 2 is the minority group with only

10 observations. The generating classifier was only able to successfully classify Class 1 cases.

This will be our reference matrix as we see how Class Balance Accuracy changes as observations

are correctly predicted into the minority class.

(a)

C1 C2

C1 40 20

C2 10 0

(b)

C1 C2

C1 41 19

C2 10 0

(c)

C1 C2

C1 40 20

C2 9 1

Table 3.3 2x2 Confusion matrices highlighting the change in accuracies as minority or majority

classes are correctly classified.

Regular Accuracy, as calculated from Table 3.3(a), is .571. The Class Balance Accuracy is

.333 as derived from averaging the sum of 40/60 and 0/20. From here, let’s observe how the
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values of Class Balance Accuracy vary as the number of incorrectly classified cases diminishes.

In Table 3.3(b), an erstwhile false negative prediction is correctly classified as a true positive,

a recall increase. CBA recognizes the additional accuracy and returns a value of .341. At this

point, no Class 2 cases have been predicted properly in either Table 3.3(a) or 3.3(b). Table 3.3(c)

displays the change where a minority class observation is correctly assigned. Subsequently, the

matrix as a whole receives a higher Class Balance Accuracy score, .357. The main result is

that CBA values a classifier’s devotion to minority class prediction over increases in additional

majority recall. An analogous restatement is, in the presence of class imbalance, majority class

precision is deemed more important because it portends to an increase in minority class recall.

3.3.0.2 Comparisons between Multi-class Measures with and without Class

Imbalance

As both a binary and multi-class measure, Class Balance Accuracy can be examined for

confusion matrices beyond k = 2. We will now present various balanced and unbalanced

special cases to gain intuitive insight into Class Balance Accuracy values as compared to the

other multi-class measures. This will serve as a primer for the following section where the

measures will be used in practice for tasks such as model assessment.

(a)

C1 C2 C3

C1 33 33 33

C2 33 33 33

C2 33 33 33

Table 3.4 Special case 3x3 confusion matrices without class imbalance where all cells are equal.

(b)

C1 C2 C3

C1 99 0 0

C2 99 0 0

C2 99 0 0

Table 3.5 Special case 3x3 confusion matrices without class imbalance where all observations

have been predicted into one class.
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(c)

C1 C2 C3

C1 99 0 0

C2 0 99 0

C2 0 0 99

Table 3.6 Special case 3x3 confusion matrices without class imbalance where each class has

been perfectly classified.

(d)

C1 C2 C3

C1 0 0 99

C2 0 99 0

C2 99 0 0

Table 3.7 Special case 3x3 confusion matrices without class imbalance where one class is

perfectly classified and all other observations have their labels switched by the

classifier.

Measure C3
a C3

b C3
c C3

d

MCC .000 .000 1.000 .000

CEN .861 .333 .000 .333

RCI .000 .000 1.000 1.000

CBA .333 .111 1.000 .333

RA .333 .333 1.000 .333

Table 3.8 Measure values calculated from Table 3.3 through Table 3.7.

Values across the various measures, as seen in Table 3.8. are generally standard. Confu-

sion Entropy’s value of .861 appears as an oddling, but simply represents a high amount of

information loss, and is consistent with the other measures. CBA returns a value of .11 for

Table 3.6(b), which is the lowest among the three tables. Despite the uniform assignment of

the classifier, Class Balance Accuracy respects that even this arbitrary assignment of classes

does have some predictive power. The Relative Classifier Information values for both 3.6(c)

and 3.7(d) should immediately be alarming. This phenomena, like all measure peculiarities, is
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a consequence of its construction where significance is placed on the overlap of the input and

output densities.

Continuing on to Tables 3.9 - 3.12, Table 3.9. describes the multi-class measures in the

presence of imbalance. Each scenario is quite uncommon but important for understanding how

the multi-class characterize algorithm performance. For these examples, the distributions of

the groups are skewed towards Class 1. In the first two tables, one group is perfectly classified

while the others are perfectly misspecified. The differentiating feature is whether the perfectly

classified class was a majority or minority group. Tables 3.11(c) and 3.12(d) contain the con-

fusion matrices for random assignments based on partitioning the data. Table 3.11(c) splits

the data into thirds and label arbitrarily assigns a class label. In the last example, one can

imagine a scheme where the classifier simply takes the given class proportions and randomly

assigns labels according to this prior probability. Matthew’s Correlation Coefficient returns

its highest value for matrix C3
a and interprets this situation more favorably than all others.

These examples highlight the strength of MCC. As a measure it can correctly identify random

assignments of data with more consistency than the other measures. CEN performs well due to

its discriminatory power, however it fails to recognize the randomness in Table 3.11(c), despite

the off diagonal assignments being a clue that the classifier isn’t performing as it should. As

seen previously, RCI is looking for distinction between groups, and largely ignores the actual

operational environment. Class Balance Accuracy, as a per class measures, gives equal weight

to both classifiers used to derive Tables 3.9(a) and 3.10(b). The perfectly classified class is

contributing its maximum allotment to the measure, while all other classes contribute zero,

hence the 1/k value. In the third table, CBA recognizes the lack of recall, and punishes this

classifier accordingly. Similarly, because randomly assigning classes based on proportions will

produce confusion matrices with skewed structures, CBA again weights the lack of recall and

precision though they are equal for each class.

In conclusion, these results through example highlight the well-established fact that different

classifiers will not rank order the classifiers identically and when assessing models the objec-

tive is an important consideration (Nguyen et.al, 2009). Furthermore as suggested by Baldi

et.al, the measures construction is important to understanding how a measure will perform
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in practice and it is often necessary to list or combine measures to get general understanding

of a classifiers properties. Of the multi-class measures listed, MCC is best reserved for un-

derstanding if a classifier is randomly assigning class labels. CEN can be used for situations

where discrimination between confusion matrices is important. RCI is important for ranking

uniformity of predictions, while willfully ignoring if the classes have been predicted correctly

or not. Regular Accuracy is still the best method for determining the number of correctly

classified observations. Class Balance Accuracy now has its own unique scenario for use. When

algorithm performance across each class is a focal point, Class Balance Accuracy should be

used to discriminate between techniques that focus on a observations from a majority class at

the expense of minority cases.

(a)

C1 C2 C3

C1 170 0 0

C2 0 0 20

C2 0 10 0

Table 3.9 The majority class is perfectly predicted and no others.

(b)

C1 C2 C3

C1 0 0 170

C2 0 20 0

C2 10 0 0

Table 3.10 A minority class is perfectly predicted.

(c)

C1 C2 C3

C1 57 57 56

C2 6 7 7

C2 3 3 4

Table 3.11 One third of the cases are randomly assigned to each group.
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(d)

C1 C2 C3

C1 145 17 8

C2 17 2 1

C2 8 1 1

Table 3.12 Observations are assigned to classes based on the natural proportion of the data.

Measure C3
a C3

b C3
c C3

d

MCC .443 .018 .011 .019

CEN .069 .139 .574 .395

RCI 1.000 1.000 .001 .002

CBA .333 .333 .162 .351

RA .85 .100 .34 .74

Table 3.13 Multi-class measure values for each instance.

3.4 On the Use of Class Balance Accuracy in Controlled and Uncontrolled

Environments

To investigate the use of Class Balance Accuracy in practice, both investigative and con-

trolled simulated studies were arranged to help garner more insight into its performance as a

model evaluation tool. The first of these studies was designed simply to assess the characteris-

tics of models chosen when several measures were maximized. Results from this investigative

study motivated a more formalized simulation experiment that sought to gain an understanding

of situations when CBA will outperform Regular Accuracy. Lastly, with the final group of sim-

ulations, we further compare measure performance when selecting models trained with varying

amounts of data. Altogether these studies will show how class balance accuracy performs as a

model performance metric by viewing its characteristics from both a theoretical and practical

perspective.

3.4.1 Study 1: Initial Investigations into Class Balance Accuracy’s Practical Ap-

plication

In practice, to get an understanding of model performance, measurement values are calcu-

lated from the final predictions.it is the intent of the measure to discriminate between models

according to their performance as defined by some objective. This objective could be how
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well the model performs overall, how well the model performs for each class, or even when a

model makes a prediction how often is that prediction correct. Each one of these is a different

perspective for which a model can be critiqued, scrutinizing between models that fulfill or fail

to meet the objective. In the previous chapter we discussed and have shown how different mea-

sures viewed the performance of models according to final output values for various prediction

scenarios. Though the ultimate goal is to select the model that can make quality predictions

robustly beyond just the data observed, it prudent of us to understand that though we often

don’t necessarily view measures as being different perspective of model performance, they do

and by their different constructions each synthesize and highlight different aspect of the pre-

dicted results. As a first look into this, for each of the data sets, six models; Naive Bayes,

Classification Trees, Neural Networks, Support Vector Machines, Linear Discriminant Analy-

sis and Random Forests, were fitted to the full data set. Using the output predictions, seven

performance metrics were calculated and for each metric every model was ranked. The top

performing model for each measure was returned and the statistics around those calculations

were recorded. This process resulted in a total of 96 model runs which corresponded to 672

performance computations. To facilitate our discussion, we will view examples that highlight

the differences between models chosen by CBA and other measures.

Measure Choice Model Groups Predicted Accuracy Counts

cba bayes 23 of 24 0.588 133

fscore bayes 23 of 24 0.588 133

gmean tree 6 of 24 0.487 110

ba bayes 23 of 24 0.588 133

mcc nnet 20 of 24 0.695 157

cen forest 8 of 24 0.434 98

oa nnet 20 of 24 0.695 157

Table 3.14 Top performing models for each performance metric as assessed after training on

the full Audio dataset.

When viewing these results, we will take into consideration the overall accuracy and the

number of classes predicted under each learned model. For the Audio data set, a total of four

distinct models were chosen across the seven metrics, with two of those models drastically

underperforming the others. Due to the structure of the data set simple rule based partition
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methods are insufficient in modeling the data space. Neither random forest or classification

trees achieved a level of accuracy above 50%. Both of these models also performed poorly across

the classes. We now come to the divergence between the model selection criteria. Models chosen

by maximizing Matthews correlation coefficient and overall accuracy had only a 30% overall

error rate, the lowest of all the models. A side effect of selecting bounds that maximize the

overall accuracy, we have sacrificed the ability to predict three of the 24 classes while other

models are able to account for these groups. The naive Bayes model, as chosen by maximizing

Balanced Accuracy, Class Balance Accuracy and Recall, had a slightly higher misclassification

rate of a little over 40%, but was able to account for three of the models that the neural

network technique could not. We begin to see the behavior of measures that account for classes

independently. They tend to uplift models that predict well across all classes while denigrating

those who can’t.

Measure Choice Model Groups Predicted Accuracy Counts

cba nnet 6 of 8 0.86 289

fscore bayes 6 of 8 0.86 289

gmean tree 5 of 8 0.86 289

ba bayes 6 of 8 0.86 289

mcc svm 5 of 8 0.869 292

cen forest 5 of 8 0.821 276

oa svm 5 of 8 0.869 292

Table 3.15 Top performing models for each performance metric as assessed after training on

the full E. coli dataset.

For the last dataset, three of the four class independent measures returned the same model,

which may suggest that they process contingency table input identically. After training on

the E. coli data set and ranking the models an alternative picture emerges. Across all seven

measures, six distinct models were chosen. Support vector machines the model chosen by MCC

and Overall Accuracy, recalled the largest total number of correct labels yet only outpaced

the other models by three total observations while failing to identify an entire group. Neural

nets, naive Bayes, and classification trees where the models chosen by the class independent

measures, all of which except classification trees were able to recall six of the eight classes. The

difference between the models selected gives us an opportunity to gain a deeper appreciation
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for the way class balance accuracy scores models. Considering the three models all have the

same overall accuracy, having been able to classify 289 cases, we must look at the breakdown

of the correct number of observations within each class to differentiate between the models.

cp im imL imS imU om omL pp

tree 142 71 0 0 19 15 0 42

svm 136 67 0 0 24 18 0 47

lda 140 57 0 0 26 19 3 44

bayes 135 57 0 0 31 18 4 44

forest 136 61 0 0 22 16 0 41

nnet 138 63 0 0 23 18 4 43

Table 3.16 Per class recall for the E. coli dataset.

From Table 2.2, we are reminded that the E. coli data set has 8 groups, three of which

have extremely low representation. The “imL”, “imS”, and “omL” classes have sample sizes of

2, 2, and 5, respectively. These classes are difficult to predict for most of the classifiers and

only LDA, naive Bayes, and neural networks are able to categorize any these observations.

The difference between the two highest performing per class models, naive Bayes and Neural

Networks, is expressed by an increase of the number of observations predicted into the CP and

IM groups for neural networks, and increase in the IMU and PP groups for naive Bayes. This

difference lends itself to an increase in the majority classes for the model selected by Class

Balance Accuracy which by virtue of its construction is sacrificing most of his observations

from the “imU” group in order to balance the recall and precision for the CP and IM classes.

When analyzing the results from models fit on the nursery data set the effects of class balance

accuracy’s attempt to create symmetry between the average precision and recall are more

pronounced. The F-score is a similar metric that accounts for the same contingency matrix

characteristics as Class Balance Accuracy, however it does so by taking the harmonic mean

of the two. For this particular data set it selects random forests, the same model chosen

when maximizing the more traditional overall performance measures. When we compare this

model’s performance to the performance of neural networks, as chosen by CBA, we see that the

main differential is how each model treats the “priority”, “spec prior” and “very recommended”

classes. Neural Networks makes a sizeable trade-off in predicting the “priority” and smaller
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one for the “spec prior” classes in favor of higher recall for the “very recommended” group.

Quantitatively, the number of percentage point differences between the different recall values

for the “priority” and “spec prior” classes are 8.6% and 2.1%, respectfully. The total difference

of 10.7% is still just above half of the recall Neural Networks gain by shifting focus to the

minority class “very recommended” cases. Recall gain for this class was 18.9% points when

using Neural Networks for the classifier. Class balance accuracy prefers to select what may be

dubbed “Caste-Free” models, ones willing to sacrifice the performance of any one class for the

scale of overall class performance. Because of the nature of class imbalance, this sacrifice is

often made at the expense of the majority class towards underrepresented groups though the

measure does account for the level of trade-off between predicting observations of these two

groups and in most cases prevents majority class observations from shouldering the full burden

of precision and/or recall.

Measure Choice Model Groups Predicted Accuracy Counts

cba nnet 4 of 5 0.947 12272

fscore forest 4 of 5 0.977 12666

gmean tree 3 of 5 0.873 11310

ba nnet 4 of 5 0.947 12272

mcc forest 4 of 5 0.977 12666

cen lda 4 of 5 0.548 7107

oa forest 4 of 5 0.977 12666

Table 3.17 Top performing models for each performance metric as assessed after training on

the full Nursery dataset.

not recom priority recommend spec prior very recom

tree 4320 3324 0 3666 0

svm 4320 4152 0 3994 199

lda 1257 2980 0 2788 82

bayes 4320 3852 0 3512 20

forest 4320 4147 0 3999 200

nnet 4320 3778 0 3912 262

Table 3.18 Per class recall for the Nursery dataset.

For the following tables, the rankings of each model selected by the measure are organized

by data set. We look at both perspectives, per class and overall, to determine how well the



www.manaraa.com

59

model selected by each measure compare with one another. If we allow the object is to max-

imize overall accuracy, selecting Matthew’s Correlation Coefficient and Regular Accuracy, we

consistently select the models that perform the best. Both measures are consistent across each

data set. Of the independent class measures, the F-Score ranked the best, beating out Class

Balance Accuracy on the Optidigits data set to achieve the top position. It is encouraging

that when considering all classes, we still are able to select models that perform well in the

aggregate, as it would be discouraging to maximize on the micro-scale and do poorly on the

macro-scale.

As we shift our objective to per class measurement, the independent class measures per-

formance shines. CBA, F-Score and Balance Accuracy all consistently choose the models that

have the best per class accuracy. Here we may note that the use of G-Mean as an independent

measure per class accuracy underperforms both of the overall accuracy measures. Interestingly,

G-Mean has been suggested in the class imbalance and some instance selection literature papers

as a suitable alterative for measuring per class accuracy over regular accuracy. our results show

that by maximizing the overall accuracy we select models that perform better per class than

models chosen by the geometric mean.

3.4.2 Study 2: All-Red Boundary Tests

In light of the results in the previous section, we find that maximizing overall accuracy and

per class accuracy can select models that perform similarly. Maximizing class balance accuracy,

consistently selected the best models for the per class objective and as expected, maximizing

overall accuracy resulted in models that achieve the highest total number of correct obser-

vations, yet both performed reasonably well at the other’s natural objective. It became the

author’s curiosity to delve deeper into these differences by designing a simulation study that

will compare measure performance as a function of a few key criteria that are extant in class

imbalance. With this in mind, we chose to explore how well class balance accuracy and regular

accuracy could differentiate between a straw-man model and one derived from the true bounds.

In previous chapters, we noted that the lack of data and high degrees of concept complexity



www.manaraa.com

60

A
n
n

ea
l

A
u

d
io

B
a
l.

E
co

li
F

la
re

G
la

ss
H

ep
.

N
u

r.
O

p
ti

P
ag

e
P

en
.

S
a
t.

S
eg

.
S
oy

Y
ea

st
s

D
ia

.

cb
a

2
2

1
2

1
1

1
2

1
1

1
1

1
1

1
2

fs
co

re
2

2
1

2
1

1
1

1
1

1
1

1
1

1
1

2

gm
ea

n
2

4
1

2
1

1
2

3
1

1
1

1
1

2
2

2

b
a

2
2

1
2

1
1

2
2

1
1

1
1

1
1

1
2

m
cc

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

ce
n

3
4

2
3

2
2

2
4

2
2

2
2

2
2

3
3

oa
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

T
ab

le
3.

19
M

ea
su

re
ra

n
k
in

gs
ac

co
rd

in
g

to
ov

er
al

l
p

er
fo

rm
an

ce
.



www.manaraa.com

61

A
n
n

ea
l

A
u

d
io

B
a
l.

E
co

li
F

la
re

G
la

ss
H

ep
.

N
u

r.
O

p
ti

P
ag

e
P

en
.

S
a
t.

S
eg

.
S
oy

Y
ea

st
s

D
ia

.

cb
a

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

fs
co

re
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

gm
ea

n
1

4
1

2
1

1
1

2
1

1
1

1
1

2
2

1

b
a

1
1

1
1

1
1

1
1

1
1

1
1

1
1

1
1

m
cc

2
2

1
2

1
1

1
1

1
1

1
1

1
1

1
1

ce
n

3
3

2
2

1
1

1
1

2
1

1
1

2
2

1
1

oa
2

2
1

2
1

1
1

1
1

1
1

1
1

1
1

1

T
a
b
le

3
.2

0
M

ea
su

re
ra

n
k
in

gs
ac

co
rd

in
g

to
p

er
cl

as
s

p
er

fo
rm

a
n

ce
.



www.manaraa.com

62

are two aspects of the class imbalance problem that hinder not only prediction but, model eval-

uation. Therefore a simulation study was designed explicitly to determine if maximizing class

balance accuracy in the presence of these extreme conditions would result in the selection of

the true model more often than regular accuracy. If so, it would shed more light into situations

where maximizing class balance accuracy may be more beneficial for overall performance than

regular accuracy itself.

In the design of experiments spirit, a two factor completely randomized factorial com-

puter experiment was created. The two factors of interest were sample size and degree of

separability. Each data set in this simulation was created by a randomly selecting a user-

specified number of observations, with specific class labels, within a 100 x 100 grid. To create

separation between the groups a true bound was placed at 50 units along the x-axis which

subsequently divided the grid into two halves. The left half of the grid and would contain

predominantly red observations and the right side predominantly green, with overlap allowed.

This true bound served as one model. The straw man alternative would be an all-red model

that predicts every observation into the red class. This model is not only weak for its predictive

power, but it’s explanatory ability as well because its blanket predictions add no new informa-

tion. For class imbalance problems, models such as these are the bane of researchers, because

in some instances they will return very high levels of accuracy only to contain no value added

as the practitioner herself could have made a classification ruled that assumes all observations

are of the majority class. Continuing on with the design, to emulate separability, the ratio of

red to green observations were adjusted within each half. For example, the high separability

level within the concept complexity factor would have any initial data set that consists 20,000

red observations and 1,000 green observations on the left side and 1,000 red observations and

20,000 green observations on the right. Our concept complexity factor, in all, contained four

levels. To evaluate the effect of sample size, twelve levels ranging from 5 data points up to

500 would be randomly selected from the whole data set. In all, this factorial design tested

48 different combinations. For each combination, 1000 repetitions were run, bringing the total

number of simulations to 48,000. Each iteration within each combination represents a different

data set, and hence on each repetition we calculated the class balance accuracy of the true
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model and the all-red model, along with the regular accuracy of the two. For each measure,

like done previously, we chose the model with the highest measured value for each metric. We

then categorized the results into one of seven categories that checked whether: “Both Models

were Incorrect”, “Only CBA chose the Correct Model”, “Only RA chose the Correct Model”,

“Both chose the Correct Model”, “Neither could Differentiate between the Models”, “RA could

not Differentiate between the models & CBA choose the Incorrect model”, “RA could not Dif-

ferentiate between the models & CBA choose the Correct model”, “CBA could not Differentiate

between the models & RA choose the Incorrect model”, “CBA could not Differentiate between

the models & RA choose the Correct model”. After accounting for all of these scenarios across

each iteration, the proportions were plotted on a line graph where the x-axis contains the sam-

ple size and the y-axis the average proportion of each simulation outcome. For each level of

concept complexity there is a separate plot displaying the convergence curves.

We see from the figures that the results are quite intuitive. For the high separability case,

there is a fast rate of convergence where both measures select the true model 100% of the time.

Looking above, this high level of separability allows for the easy delineation of the red and green

classes. At extremely low sample sizes we do see some deviation from perfect selection, but it

is in no way pronounced. Moving to the average separability level, we see the ratio of green

to red observations on the right-hand side decrease allowing us to see visually that there is

less separation between the two groups. Looking at the convergence curve, even for the lowest

amount of data, both measures are correct about 77% of the time. The next largest category

of simulation outcomes is where neither model could differentiate between models. Looking at

the results under partial separability, the trend becomes more pronounced and we begin to see

more diversity in the simulation outcomes for the smaller sample sizes.

Having now made it to the low separability results, let us take our time to synthesize the

outcome. First looking at the data, we see that the two groups are barely distinguished by the

bounds. There is such a high level of imbalance that even visually partitioning the groups would

be tough without knowing the model for which the data was simulated from. Of all the levels,

the convergence curve corresponding to high concept complexity shows the most diversity of

the four levels. The same overall trend occurs, such that as we increase the sample size both
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Figure 3.3 Data snapshot and convergence curves for two groups in a highly separable sce-

nario.
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Figure 3.4 Data snapshot and convergence curves for two groups in a scenario with average

separability.
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Figure 3.5 Data snapshot and convergence curves for two groups in a partially separable

scenario.



www.manaraa.com

67

Figure 3.6 Data snapshot and convergence curves for two groups in a scenario with low sep-

arability.
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measures are able to select the correct model more often, however the rate of convergence is

much slower and for those lower sample sizes neither measure could differentiate between the

models very often. For these low amounts of data, we see the effect of class imbalance taking

shape as neither could differentiate or both made the wrong model choice more often than

either model got the correct answer. As we slowly increase the amount of data, class balance

accuracy has an advantage over overall accuracy because of its ability to discriminate between

classes. It is in these circumstances where class balance accuracy chooses the correct model

when regular accuracy cannot differentiate between them or simply selects the wrong model.

The benefits of using class balance accuracy do begin to taper off after about 50 observations

yet, we see that there is a clear benefit to using class of accuracy over regular accuracy for

sample sizes in this range. Putting all of the information together, we see the class balance

accuracy is the preferred measure in circumstances of low separability between classes and when

there is a small amount of data. This is a telling result because we have shown instances where

the use of class balance accuracy will select the model that not only has the highest level of

predictive accuracy, but also them be the one that is more descriptive as well.

3.4.3 Study 3: U.C.I. Hold-Out Study

With the results, of our other two study in hand, we now revisit our repository data sets.

Given what we know about the performance of class balance accuracy for various levels of

concept complexity and amounts of data a final, albeit smaller scale, investigatory study was

conducted. Similar to the first, for each data set each, all available models will be fit and our

seven measures calculated. Taking a cue from the previous study, holdout samples of various

sizes were taken and used as the training sets. These holdout samples start with very little

data, using only 25% of the original observations. The model were built from these training

sets and then applied to the remaining test observations. This process was repeated five times

for each holdout sample, after which, the amount of data for the holdout sample was then

increased to 66% and 75%. This hybrid study both emulates the machine learning process as

currently practiced by using holdout sets and resampling procedures, but adds a small amount

of rigor by varying the size of the holdout samples. This process was applied to all of the data



www.manaraa.com

69

sets and relevant results such as the mode of the number of groups predicted and the average

level of overall accuracy. Less important statistics, such as the average difference in training

bias between the training and test sets were kept along with a rounded estimate of the average

counts. Though not exactly a full factorial randomized design, this experiment construction will

allow us to assess how well the models chosen by class balance accuracy perform on unforeseen

test sets data, but also how its selection changes as more data is received.

Reps Takeout Measure Model Groups ¯O.A. ¯T.Bias ¯Counts

5 0.25 cba forest 5 0.919 0.002 549.8

fscore forest 5 0.919 0.002 549.8

gmean bayes 5 0.397 0.046 237.2

ba bayes 5 0.397 0.046 237.2

mcc forest 5 0.919 0.002 549.8

cen bayes 5 0.397 0.046 237.2

oa forest 5 0.919 0.002 549.8

Reps Takeout Measure Model Groups ¯O.A. ¯T.Bias ¯Counts

5 0.66 cba forest 5 0.942 -0.011 255.2

fscore forest 5 0.942 -0.011 255.2

gmean forest 5 0.942 -0.011 255.2

ba forest 5 0.942 -0.011 255.2

mcc forest 5 0.942 -0.011 255.2

cen bayes 5 0.398 0.005 107.8

oa forest 5 0.942 -0.011 255.2

Reps Takeout Measure Model Groups ¯O.A. ¯T.Bias ¯Counts

5 0.75 cba forest 5 0.946 -0.01 188.2

fscore forest 5 0.946 -0.01 188.2

gmean forest 5 0.946 -0.01 188.2

ba forest 5 0.946 -0.01 188.2

mcc forest 5 0.946 -0.01 188.2

cen bayes 5 0.391 0.001 77.8

oa forest 5 0.946 -0.01 188.2

Table 3.21 Hold out study results for the Anneal data set.

Before our discussion, let us reiterate that the selection of models was done after all rep-

etitions were completed. The implication is we are selecting the model that maximizes the
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average value of that measure and then comparing these models according to their average

test accuracy. Though listed in the proper order, it is more intuitive to start analyzing the

results using the largest holdout sample first. By taking backward steps, we see which models

performed the best, on average, given the most data and as we step down, gain insight as to if

the measures consistently select this model given fewer and fewer observations. This is similar

to study two accept we explicitly see which model was chosen for each measure for the various

amounts of data.

We began with the annealing data set, whose outcome was mundane, yet will serve as

a simple example of how to interpret the results of this study. After creating five randomly

sampled holdout sets containing 75% of the data, models were fitted to each data set, the

measures were calculated, and averaged across the iterations. When maximizing the average

value, six out of the seven measures selected random for as its preferred model. Confusion

entropy selected the naive Bayes classifier which unlike the other model performed very poorly.

When given only 66% of the data, all measures return the same results. In the situation where

measures have to select from models that were fitted with only 25% of the original data in the

average training there was more diversity amongst the model selected. Here the G mean and

Balance Accuracy both choose the underperforming Bayes model. Therefore when thinking

about the results in the correct order, if given very little data the G mean and balance accu-

racy measures would have selected an underperforming model, and would require more data in

order to select a better one.

Results for hepatitis data set were much more interesting. In this instance CBA and G-

Mean rightly selected the highest performing model, linear discriminant analysis, for every

holdout sample size. The F-Score, a main competitor, selected the second highest performing

model support vector machines when given more data despite initially selecting what would

later become the highest performing model. These results are interesting because when given

a small amount of data most measures selected LDA, but as more data was introduced, the

different characterizations of the datum by the various lead them to choose the model that

ultimately would achieve the best overall test results. This was true for regular accuracy and

Matthew’s correlation coefficient whom both historically performed well at selecting models
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Reps Takeout Measure Model Groups ¯O.A. ¯T.Bias ¯Counts

5 0.25 cba lda 2 of 2 0.783 0.21 65.8

fscore lda 2 of 2 0.783 0.21 65.8

gmean lda 2 of 2 0.783 0.21 65.8

ba lda 2 of 2 0.783 0.21 65.8

mcc lda 2 of 2 0.783 0.21 65.8

cen forest 2 of 2 0.848 -0.077 71.2

oa lda 2 of 2 0.783 0.21 65.8

Reps Takeout Measure Model Groups ¯O.A. ¯T.Bias ¯Counts

5 0.66 cba lda 2 of 2 0.816 0.106 31

fscore svm 2 of 2 0.842 0.096 32

gmean lda 2 of 2 0.816 0.106 31

ba lda 2 of 2 0.816 0.106 31

mcc svm 2 of 2 0.842 0.096 32

cen bayes 2 of 2 0.647 0.039 24.6

oa svm 2 of 2 0.842 0.096 32

Reps Takeout Measure Model Groups ¯O.A. ¯T.Bias ¯Counts

5 0.75 cba lda 2 of 2 0.793 0.119 22.2

fscore svm 2 of 2 0.779 0.161 21.8

gmean lda 2 of 2 0.793 0.119 22.2

ba bayes 2 of 2 0.65 0.026 18.2

mcc svm 2 of 2 0.779 0.161 21.8

cen bayes 2 of 2 0.65 0.026 18.2

oa svm 2 of 2 0.779 0.161 21.8

Table 3.22 Hold out study results for the Hepatitis data set.
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that attained the highest level of overall accuracy.

Reps Takeout Measure Model Groups ¯O.A. ¯T.Bias ¯Counts

5 0.25 cba forest 5 of 5 0.966 -0.002 3966.2

fscore tree 5 of 5 0.96 0.011 3939

gmean forest 5 of 5 0.966 -0.002 3966.2

ba tree 5 of 5 0.96 0.011 3939

mcc tree 5 of 5 0.96 0.011 3939

cen bayes 5 of 5 0.896 0.007 3677.4

oa tree 5 of 5 0.96 0.011 3939

Reps Takeout Measure Model Groups ¯O.A. ¯T.Bias ¯Counts

5 0.66 cba forest 5 of 5 0.97 0.003 1804.6

fscore tree 5 of 5 0.965 0.009 1795.8

gmean forest 5 of 5 0.97 0.003 1804.6

ba forest 5 of 5 0.97 0.003 1804.6

mcc tree 5 of 5 0.965 0.009 1795.8

cen bayes 5 of 5 0.879 0.002 1634.8

oa tree 5 of 5 0.965 0.009 1795.8

Reps Takeout Measure Model Groups ¯O.A. ¯T.Bias ¯Counts

5 0.75 cba forest 5 of 5 0.973 0 1331

fscore forest 5 of 5 0.973 0 1331

gmean forest 5 of 5 0.973 0 1331

ba forest 5 of 5 0.973 0 1331

mcc tree 5 of 5 0.968 0.006 1323.8

cen bayes 5 of 5 0.918 -0.006 1255.6

oa tree 5 of 5 0.968 0.006 1323.8

Table 3.23 Hold out study results for the Page data set.

The outcome of the experiment on both the page and satellite data yielded nearly identical

results. Even when given little data, maximizing class balance accuracy selected the model that

what later achieve the highest average overall accuracy. Across all sixteen experiments, CBA

chose the model with the highest average overall accuracy on fourteen of the data sets and for

the two experiments it did not, the model selected was ranked second. Within the context of

our previous study, these results are not too surprising. There is further room to investigate
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Reps Takeout Measure Model Groups ¯O.A. ¯T.Bias ¯Counts

5 0.25 cba forest 6 of 6 0.895 0.004 4318.6

fscore svm 6 of 6 0.88 0.022 4244.8

gmean forest 6 of 6 0.895 0.004 4318.6

ba svm 6 of 6 0.88 0.022 4244.8

mcc svm 6 of 6 0.88 0.022 4244.8

cen nnet 4 of 6 0.251 0.022 1212.8

oa svm 6 of 6 0.88 0.022 4244.8

Reps Takeout Measure Model Groups ¯O.A. ¯T.Bias ¯Counts

5 0.66 cba forest 6 of 6 0.913 -0.001 1997.8

fscore forest 6 of 6 0.913 -0.001 1997.8

gmean forest 6 of 6 0.913 -0.001 1997.8

ba forest 6 of 6 0.913 -0.001 1997.8

mcc forest 6 of 6 0.913 -0.001 1997.8

cen nnet 5 of 6 0.402 0.007 878.2

oa forest 6 of 6 0.913 -0.001 1997.8

Reps Takeout Measure Model Groups ¯O.A. ¯T.Bias ¯Counts

5 0.75 cba forest 6 of 6 0.918 -0.003 1475.8

fscore forest 6 of 6 0.918 -0.003 1475.8

gmean forest 6 of 6 0.918 -0.003 1475.8

ba forest 6 of 6 0.918 -0.003 1475.8

mcc forest 6 of 6 0.918 -0.003 1475.8

cen nnet 5 of 6 0.446 0.002 717

oa forest 6 of 6 0.918 -0.003 1475.8

Table 3.24 Hold out study results for the Satellite data set.
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exactly why class balance accuracy is able to select the top performing models quicker. Again,

this is likely because of its multi-perspective focus on both precision and recall. By seeking out

models that account for these metrics across each class, even when it is seemingly not wise to

do so, it may suffer higher error on the initial data. However the payoff is subsequently realized

when new data is collected that have minority classes represented within the same bounds as

the training data. This forced accounting of the minority classes in the initial phase affords

better prediction in the latter.
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CHAPTER 4. MULTI-CLASS INSTANCE SELECTION WITH CLASS

BALANCE ACCURACY

4.1 Introduction

Many contemporary methods for data analysis rely on what may be called the “Goldilocks

principle”. When the algorithms are supplied with an insufficient amount of data the predictions

may not be robust, yet when faced with a deluge of data the techniques become computationally

intractable. It has become obvious that advances in data collection and storage have outpaced

the scalability of current data mining tools. This is the current conundrum that big data places

on analysts (Rickert, 2011). A two-sided approach for dealing with this issue revolves around

increasing the scalability and parallelization of learning techniques and/or utilizing data reduc-

tion methods that focus on removing missing, repetitious, or incorrectly coded observations.

Instance selection is one such automated technique for the latter of the two approaches which

seeks to find subsets of the original data set that, when used to train a model, will result in

the same or higher predictive accuracy. Ideally, this best subset of training instances will allow

models to be learned quickly and still maintain its robustness. For class imbalance problems,

the use of instance selection can have can potentially have off-putting results because the mea-

sure used to determine the subset if a subset quality is the overall accuracy of the models

trained. Throughout this work we have shown that maximizing accuracy has a tendency to

neglect minority classes and its use in instance selection is no different. This fact motivated the

use of class balance accuracy as an alternative optimization criteria for the instance selection

mathematical program. In the following section will discuss some of the basics of instance

selection and how class balance accuracy was embedded to make the technique admissible for

class imbalance applications.
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4.2 Background

To accomplish the desired goal, a wrapper technique was employed as a way to base the

instance selection criteria on an accuracy measurement derived from the classifier’s output.

Within this framework, the subsets which do not result in higher metric values are ignored. In

the instance selection literature, wrapper approaches for training set selection have had the most

development and hence the motivation for its utilization (Pedrajas, 2011). In a chapter from his

“Integer Programming for Instance Selection”thesis, Walter Bennette motivates, conceptualizes

and develops a novel reformulation of the wrapper approach as a mathematical programming

problem. This formal recasting of a prominent instance selection method as an integer program

not only justifies the use of heuristic search methods that are currently employed for the subset

selection procedure, but provides a rigorous framework for which modifications can be built

upon. By virtue, this research is hinged on Bennett’s formulation and Java implementation of

the instance selection procedure.

The binary integer instance selection formulation is as follows:

Define:

aj is the accuracy value of the jth training data subset.

xj is a binary choice variable for building the model using the jth training subset.

aij is a parameter set to 1 if an instance, i is in the jth subset and is 0 if otherwise.

I is the set containing all instance choices.

J is the 2n set that contains all decision variables.

Integer Program:

max
∑
j∈J

ajxj

s.t.∑
j∈J

aijxj ≤ 1 ∀ i ∈ I
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∑
j∈J

xj ≤ 1

xj ∈ {0, 1} ∀ j ∈ J

The main takeaways from this framework are derived from the fact that to solve this instant

selection programming problem, a search must ensue across all possible training data subsets

to select the one that maximizes some training metric. The large-scale nature motivates the

use of heuristic methods to avoid this exhaustive search. To construct the candidate training

subsets, a clever backwards selection scheme that fits naive Bayes classifiers to subsets and in

an efficient stepwise manner, determines the inclusion or exclusion of individual instances from

the resulting training accuracy of that set (Bennette, 2014).

The accuracy assessment of both subsets and instances would ordinarily utilize some overall

accuracy measure. Throughout this body of work, we have shown the natural implications of

using overall accuracy metrics; wherefore, underrepresented classes, which have the same weight

as all others, may be ignored in cases of low separability between the groups. By embedding

class balance accuracy into the objective function of the wrapper reformulation, and into the

stepwise selection process, we expect the instance selection procedure to overcome majority

class bias. A small simulation study was developed to validate this hypothesis.

4.3 Study 1: Accuracy Comparisons between Class Balance Accuracy and

Regular Accuracy Maximized Subsets

To initialize the study, three simulated data sets were created to mimic an increasing level

of concept complexity. The class imbalance ratio was first fixed at a 10 to 1 ratio of majority to

minority group observations for each data set. A straightforward 2 x 3 factorial design with no

replication was used to assess the performance of the instance selection process as we oscillate

between maximizing regular accuracy and class balance accuracy for each level of separability.

The resulting subsets were then used to learn a naive Bayes classifier and the resulting training

regular accuracy and class balance accuracy values were recorded for later utility comparisons.

Figures 4.1 and 4.2, visually highlight the results for the non-separable and partially separable

experimental runs.
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A visual inspection of Figure 4.1 highlights that the classifier derived from the class balance

accuracy maximized subset is smaller than its counterparts, fitting seamlessly inside the true

area. Minority observations for the non-separable concept complexity data set were uniformly

distributed inside of a one unit square block. Along the top row are all identical pictures of the

original simulated data set. Underneath each plot is a representation of the predictions for the

naive Bayes classifier as applied to the subset maximized by the measure. For robustness, we

included a view of the prediction results of fitting a naive Bayes classifier without any instance

selection. Overall each classification method appears to recall many of the observations from the

minority class in such a way that the results look visually similar. For the partially separated

data set, comparable results were achieved. Scrutinizing further into Table 4.1 reinforces a

more nuanced understanding of the differences between maximizing these two measures.

Dataset Maximize Accuracy CBA

Non-Separable RA 0.951 0.825

Non-Separable CBA 0.958 0.870

Partially-Separable RA 0.971 0.863

Partially-Separable CBA 0.971 0.897

Separable RA 0.998 0.989

Separable CBA 0.995 0.978

Table 4.1 Instance selection model results from three simulated data sets. Three degrees of

concept complexity were analyzed: Separable, Partially-Separable and Non-Sep-

arable. As the concept complexity increases, building models from subsets that

maximize Class Balance Accuracy will out preform similar subsets that maximize

Regular Accuracy.

The tabular results provide much more resolution into the differences between the results.

For the non-separable case, instance selection based on class balance accuracy induced the

classifier with better overall and class balance accuracy. Returning back to Figure 4.1, we are

reminded that the size of the boundary created by the CBA maximized instances was indeed

smaller than its regular accuracy relative. Synthesizing both the accuracy and class balance

accuracy training accuracies for this subset hints that the smaller bounds created were more

precise, and captured as many of the minority class observations as possible without sacrificing
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precision. For the partially separable case we do not receive a gain in overall accuracy, however

there is a small positive delta in class balance accuracy. It is interesting that the concept of

discriminancy appears again as it becomes apparent that the regular accuracy measure cannot

differentiate between the predictive quality of either of the induced classifiers. In the perfectly

separable case, we found that regular accuracy maximized subsets performed the best. Within

context, these results are not surprising and are consistent with observations made about im-

balance measurements for easily separable cases. Therefore it is not surprising that an increase

in predictive ability of models trained on preprocessed data sets optimally constructed with

instance selection are attained across both measures. Results from the simulation study show

that embedding class balance accuracy within the instance selection framework can improve

accuracy while accounting for minority class observations, particularly in scenarios without

clearly separable bounds.

4.4 Study 2: Accuracy Comparisons between Class Balance Accuracy and

Regular Accuracy Maximized Subsets

Our second study was designed to highlight the utility of instance selection for multi-class

class imbalance problems as well as to examine the robustness of the previous findings. Here

we employ a holdout methodology that includes replication. The first step of the investigatory

process involves removing a holdout sample from the original data set and performing two

instance selection procedures, maximizing each measure. This resulted in two distinct subsets

of data derived from the training sample. A naive Bayes classifier was fit to both instance

selected subsets, and then applied to the test set where the final test accuracy for each case was

recorded over five repetitions. Due to reduced frictions in data formatting and manipulations,

the choice was made to use the diamonds and glass data sets. To increase the computation

speed, a subset of the thousand observations from the diamonds dataset were used in lieu of

the entire population of over 54,000 data points.

Results from Table 4.2 show the training and test accuracies for both instance selection

runs and when no selection scheme was employed. Our focus will be on the test accuracies
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for each procedure, as they are the most reflective of model performance. It is immediately

reassuring to see that both instance selection procedures outperform the naive Bayes fit to the

original data. This reaffirms the overall benefit of instance selection, and touts its ability to

remove noisy observations which will ultimately result in subsets that can induce better per-

forming classifiers than those trained on the original sample. When comparing the two instance

selection procedures, we see that the subsets chosen by maximizing overall accuracy result in

classifiers with higher test accuracy. Likewise, subsets that were derived from maximizing class

balance accuracy resulted in classifiers that achieve the highest test values under this metric.

These results are consistent across every iteration.

The per class outcomes for the Diamonds data reiterate these results. The increase in class

balance accuracy is achieved as the subsets chosen by maximizing CBA shift the focus from

solely the “Premium”, “Ideal”, and “Good” classes towards the “Fair” and “Very Good” groups.

Note that the “Fair” class is severely underrepresented in the population accounting for only

3% of the data. When maximizing overall accuracy there appears to be an incentive to ignore

this group and therefore the recall values are lower on four the five iterations when comparing

the recall across the two selection procedures. For the “Very Good” class, which also happens

to be in the minority, the observations benefit from a higher recall when CBA is embedded

within the instance selection procedure.

By extracting the first two principal components, a multi-dimensional scaled version of the

data was visualized. This two-dimensional representation of the data is plotted along the two

independent components which explain the highest proportion of variation from within the

variance-covariance matrix, as derived from the data. Figure 4.3 plots the entire data set from

which the instances will be derived from. Figure 4.4 shows the actual observations as chosen by

the instance selection procedure for both metrics during the first repetition. Though we cannot

say definitively how the bounds were drawn, intuitively, we can observe the difference between

the two selection procedures, particularly how the classes are represented with respect to their

location on the plot making it immediately noticeable that maximizing overall accuracy resulted

in fewer observations selected into the optimal set. If the objective is to maximize overall

accuracy with the fewest number of observations then the subset chosen by maximizing regular
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Test Recall Per Class (Max CBA)

Iteration VeryGood Premium Ideal Good Fair

1 0.383 0.595 0.874 0.375 0.400

2 0.242 0.696 0.711 0.500 0.625

3 0.329 0.443 0.865 0.323 0.667

4 0.253 0.707 0.858 0.423 0.600

5 0.310 0.614 0.858 0.471 0.538

Test Recall Per Class (Max OA)

Iteration VeryGood Premium Ideal Good Fair

1 0.198 0.881 0.953 0.531 0.000

2 0.088 0.899 0.930 0.536 0.500

3 0.127 0.772 0.880 0.387 0.500

4 0.184 0.890 0.918 0.423 0.400

5 0.226 0.783 0.925 0.294 0.692

Table 4.3 Per class recall for the Diamonds data set per repetition by Instance Selection

technique.

accuracy would naturally be the best choice since CBA focuses on per class performance. The

instance selection procedure that maximizes CBA took special care in selecting observations

to represent the “Fair” and “Very Good” groups. This is apparent because fair observations,

as represented by blue circles, exist at the top and bottom ranges of the second principal

component whereas only one observation exists in the regular accuracy maximize subset. “Very

Good” observations are represented by golden triangles and are interwoven between the clusters

of the different group in the CBA subset. In the case of the overall accuracy maximized set,

there are only five representative “Very Good” data points which ultimately result in low class

recall.

With regards the use of class balance accuracy, there is a very promising story to be told

from the results on the glass data set. On four of the five repetitions, using CBA is the

maximizing criteria resulted in subsets that induced classifiers that achieve the highest overall

and per class accuracy. Table 4.5, highlights how the inability of overall accuracy to select

subsets that accounted for multiple classes eventually resulted in subpar performance across all

classes. In many of the iterations, one or more groups were completely left out of the maximized

subset which resulted in the inability of the classifiers to predict into any of those classes. Given
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Figure 4.3 A MDS plot of the full Diamonds data set.

the situation with there are multiple classes within a training set, it becomes prudent practice

to build classifiers that can account for all classes because of the uncertainty of the group

proportions extant in the larger population. This is a crucial result. If the initial model does

not account for multiple classes, then when tasked with predicting on unforeseen data, the

inability to perceive and demarcate multiple classes can have a potentially devastating effect if

the existences of the ignored classes appear in high proportions within the test set. Figures 4.6

shows that for the second repetition group “E”, as denoted by golden triangles, was completely

omitted from the subset that was maximized by regular accuracy. This resulted in a 100%

error rate for this class. As a testament to its ability, the instance selection procedure based

on class balance accuracy selected only two observations from the training set to represent the

“E” class and was able to achieve 100% recall when the induced model was applied to the test

data. By focusing on the per class precision and recall, diverse subsets are selected from the

training data which induced robust classifiers that achieved a high level of accuracy overall and

across individual classes. These convincing results vet the use of class balance accuracy is an

embedded measure within the instance selection framework.
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Test

Recall Per Class (Max CBA)

Iteration A B C D E F

1 0.667 0.654 0.200 0.400 0.667 0.889

2 0.731 0.630 0.000 0.000 1.000 0.900

3 0.810 0.516 0.500 0.667 1.000 0.818

4 0.640 0.640 0.000 0.250 1.000 0.778

5 0.483 0.783 0.200 0.200 0.667 0.857

Test Recall

Per Class (Max OA)

Iteration A B C D E F

1 0.792 0.462 0.000 0.000 0.333 0.889

2 0.615 0.593 0.000 0.000 0.000 0.900

3 0.619 0.581 0.500 0.333 1.000 0.909

4 0.600 0.680 0.000 0.000 0.000 0.667

5 0.483 0.826 0.200 0.400 0.000 1.000

Table 4.5 Per class recall for the Glass data set per repetition by Instance Selection technique.

Figure 4.5 A MDS plot of the full Glass data set.
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CHAPTER 5. A NOVEL APPROACH TO MODEL STACKING

THROUGH CLASS EXPERT ENSEMBLING

5.1 Introduction

As the field continues to mature, advances in techniques for improving predictions in the

presence of class imbalance have been steadily gaining momentum. Survey articles show a

diverse number of techniques that revolve around both biased data sampling and algorithm

design (Galar et. al, 2012). Galar and others point out that most of the advancements have

been in the binary imbalance realm. For these problems the authors show that ensemble

methods, which crowd source knowledge from multiple iterative models, can lead to improved

class label estimates. In an attempt to apply these methods to the multiclass problem, class

decomposition techniques are used to deconstruct the multiclass problem into several binary

ones. Wang et al. argue that class decomposition techniques may actually exacerbate the class

imbalance problem regardless if “one vs. all” or “one vs. one” methods are implemented. When

newer techniques are applied to multi-class problems, it forces a three-step process where the

data is first decomposed into some number of sub tasks, and then for each sub-problem an

imbalanced technique is applied. At the last step, the class predictions are aggregated across

each model fit to every sub-problem. This process is convoluted and has not received much

investigation in the literature. As an alternative approach to improving multi-class predictions,

we propose the use of Class Expert Ensembling, a novel model stacking technique than leverages

model diversity to improve predictive accuracy across each class.
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5.2 Background

Class Expert Ensembling is a modeling procedure designed to iteratively partition the

data space by having “expert” models make class by class predictions. The full algorithm

consists of three main components, expert evaluation and selection followed by a sequential

prediction scheme. Stated more formally, given a collection of models, m, and a k-class learning

task, we want to select the best preforming model for each particular class. The idea is that

some models may outperform other model predictions for certain classes. Typical stacking

methods and voting schemes reweight the model predictions for each instance to maximize

overall accuracy. CEE seeks to find a given model that specializes in a given class for the

learning task. This process is facilitated by the use of a classic integer program called the

“assignment problem” where the task is to select among a group of competing units the ones

that maximize a specified objective function. For the purposes of Class Expert Ensembling,

the solution to this modified assignment problem is a collection of class-model pairs that will

be used to make the sequential predictions. Given a new data set, the ordered models are

sequentially applied to the data, partitioning and separating each class from the original set

as each expert is allowed to access the data. At termination, all observations will be predicted

into a class and model assessment can begin.

5.3 Algorithm

The first stage of Class Expert Ensembling involves fitting a collection of models to a

given dataset. This collection of models will form the basis of the “multiple classifier system”,

which will be leveraged to make the predictions. Conceptually, multiple classifier systems are

similar to model ensembles where the latter involves techniques that make use of a single model

type being perturbed multiple times by some variance inducing procedure, such as resampling,

and then aggregating the output predictions. The former induces variation implicitly by allow-

ing models of different types such as Support Vector Machines, Classification Trees, and a host

of other algorithms to be admissible within the M.C.S. framework. Model diversity is inherent

within the system because of the varied algorithms present and not manufactured through re-
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sampling procedures. Before the M.C.S. can be formed, the candidate models are all fit to the

given data set and evaluated. As discussed previously, Class Balance Accuracy works as a per

class measure that encourages models to improve class Recall while not sacrificing Precision.

This property itself fits precisely in the procedural framework despite; in general, evaluating

models on a class by class basis is a task that most measures are not well suited. Therefore,

though the framework has been designed to accommodate any per class measure, Class Balance

Accuracy will be used as one of the main components in the objective function of the binary

integer program.

The “Expert Choice Problem”, a modified assignment problem, is as follows:

Define:

cij is a binary choice variable for class i and model j.

ej is a binary choice variable for model j.

PCAMij is a Per Class Accuracy Measure for model j’s prediction of class i.

OAMj is an Overall Accuracy Measure for model j.

Where i = 1,...,k classes j = 1,...,m models

Integer Program:

max
k∑
i

m∑
j
PCAMijcij +

m∑
j
OAMjej

s.t.
m∑
j
cij = 1 ∀ i

m∑
j
ej = 1

cij ∈ {0, 1}

ej ∈ {0, 1}
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The above assignment problem seeks to maximize the sum of the training Class Balance

Accuracy contributions across all classes as well as the overall training Accuracy. This objective

function represents a mathematical formulation of our desire to select the best model for each

class. The solution space, combinations of models and classes, is then constricted by two

constraints. The first limits the number of experts per class to a single representative, while

the second allows only one overall expert to be chosen.

The formulation of the integer program is motivated by the belief that maximizing the

training evaluation criteria will act as a proxy and likewise serve as the combination that will

achieve the highest accuracy on any unforeseen test data. This issue is a general data mining

problem and not specific to this application, however it must be explicitly stated due to the

nature of what is being proposed. Unfortunately, there is no guarantee that another suboptimal

combination of experts could not achieve higher accuracy on the test set.

With the optimal model-class pairings, the experts form the multiple classifier system

and the foundation is set for the sequential predictions to be made. To complete the Class

Expert Ensemble procedure the following ‘Assembly Line” algorithm is employed:

Algorithm 1 Assembly Line Algorithm

1: Solve the k-Class Expert Ensemble Problem

2: Select an Assembly Procedure

3: if Procedure = “Class Proportions” then

4: Calculate Class Proportions from the Training Set, D

5: Supply a New Dataset, D∗

6: Order Classes i through k in D∗ by Ascending Training Set Class Proportionality

7: else

8: if Procedure = “Per Class Accuracy” then

9: Select a Per Class Accuracy Measure

10: Calculate Per Class Accuracy alues from the Training Set, D
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11: Supply a New Dataset, D∗

12: Order classes i through k in D∗ by Descending Per Class Accuracy

13: end if

14: end if

15: for Each i in k do

16: Make Class Predictions on New Data, D* with Expert j

17: Remove Predicted Class i Observations from New Data, D*

18: Next i

19: end for

20: Predict D* Remainders with the Overall Expert

end

Making predictions is intuitively simple with this algorithm. Once given a new data set,

the experts are first ordered according to the prevalence of the class they intend to predict.

Beginning with the class with the least representation, the expert makes prediction on the new

data, labeling all observations. Observations that match the model’s expertise are removed for

the data set and the next model is allowed to make its predictions. It too removed observations

within its realm of expertise and steps aside. This process continues across all classes. Because

of the nature of the sequencing, there is no guarantee that every observation will be predicted

into a class, therefore the overall expert, as denoted by ei is employed to assign all remaining

observations into a class. Once the procedure terminates, all observations will have predicted

labels and be ready to assess for statistical accuracy.

5.4 Study: Investigation of Model Performance on Hold-Out Samples from

the U.C.I. Model

The experimental design, constructed to compare and contrast the model performance

of Class Expert Ensembling, consisted of a simple holdout procedure which used 66% of the
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data to train the model and the remaining 33% for prediction and model assessment. Utilizing

fourteen data sets, all models were learned on the training set and applied to the hold-out

samples. Candidate experts for the multiple classifier system consisted of every model that

could be successfully fit to the data, with the exception of adaBoost. This allows for the direct

comparison between our expert approach and adaBoost, both of which employ multiple models

to make their predictions. For any given data set, every singular model was fit twice, separately

and within the Class Expert Ensemble framework.

Table 5.1 contains a ranking of the models according to their overall test accuracy. Along

each column, the rank order of each successful model’s fit is given for the learning exercise as

executed on the data set labeled for that column. At a high level, class expert ensembling as

a framework performs relatively well with respect to its peers. Though one single variation

does not consistently stand above the crowd, looking down at the results by data set, for

almost every data set some variant of class expert ensembling performed well. Four data sets;

Annealing, Hepatitis, Balance Scale and Diamonds were modeled best by the class expert

ensemble framework. This will be investigated further later in the chapter. As mentioned in

the review of literature, ensemble methods as a whole tend to outperform other techniques

and this research further supports the claims of previous work in the field as random forests,

adaBoost, and class expert ensembles, as a group, generally have the lowest rankings across

each data sets. Of the three and, random forests does exceptionally well. An interesting fact to

note is that for the two data sets that random forest underperformed, class expert ensembles

delivered stellar predictions. By construction, because of its low overall accuracy values, the

integer program suppresses the random forest predictions in favor of the expertise of better

performing models. From these results, we gain an initial understanding of the benefit of the

model diversity that C.E.E. exploits during its model stacking procedure.

When ranking the models according to their test class balance accuracy values, we receive

a rather counter-intuitive result. Adaboost and random forests, which are not particularly

known for their per class modeling ability, performed relatively well across each of the data

sets. Intuitively, we would expect the class expert framework to achieve the best results under a
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per class objective because of its procedure explicitly focuses on creating low error class-model

pairs. The logic that naturally follows is that the per class optimization of results will result

in higher class balance accuracy values for the aggregated predictions. Therefore it is curious

that the results don’t follow this pattern. The likely result is a consequence of the class bal-

ance accuracy accounts for the precision of the predictions made. The class expert framework

sequential prediction scheme does not sufficiently constrain the expert models as they select

observations into their respective groups. As a consequence, minority groups may achieve high

recall but suffer low precision. To gain insight into this, an investigation into the effects of the

sequential prediction procedure should be conducted.

To conclude our study, individual results of the Annealing, Balance Scale, and Yeast data

sets will be analyzed to get a more nuanced understanding of the class expert ensembling

technique. For the Annealing dataset, our multiple classifier system ranked above all other

models according to overall accuracy, edging out Classification Trees by one observation. The

per class recall for both models appear to be identical, but this is due to truncation. What is

of particular interest is that when maximizing class balance accuracy for both per class and

overall performance, we return with a multiple classifier system that consists of a combination

of random forest and tree classifiers. Individually neither model performed exceptionally well,

but when introduced into the expert framework their performance was enhanced. This fact

gives support for the utility of this expert procedure. Results on the Balance Scale data set

expressed a similar concept. The individual models, when learned separately and applied to

the data set underperformed, yet when employed as a unit within the class expert framework

decreased the total misclassification error. Though the expert ensemble technique does not

outperform for both performance perspectives, its predictions do return a modest 2% increase

in overall accuracy. For this variant of C.E.E. tested, regular accuracy was chosen for the

overall measure and balance accuracy, the recall per class was chosen as the per class measure

of performance. The predictions were made in order of class proportionality with the minority

class being predicted first. Though extremely rare for this study, class expert ensembles did

outperform the other models according to class balance accuracy on two of the data sets. One
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of these sets was the yeast sample from the U.C.I. machine repository. Overall performance

for the best expert ensemble was found by maximizing class balance accuracy per class, and

regular accuracy overall in conjunction with a class proportional prediction sequence. This

resulted in 316 correctly classified observations, four shy of the highest ranking model, Random

Forest. The gains in class balance accuracy come from the successful prediction of the “ERL”

minority class. With so many classes extant in the data, the assignment problem was tasked

with finding ten class-model pairs and one overall expert. Across these elecen experts, four

distinct models of the original six were chosen. In light of this, intuition suggests that model

diversity benefits the modeling process helping to achieve higher overall accuracy.

With the following study we have shown that the novel model stacking procedure that Class

Expert Ensembles employs can lead to better overall predictions. Made possible by the use

of the per class and overall performance perspectives, class expert ensembles are able to find

class-model pairs that additively outperform the singular model learning techniques. Given the

imbalanced data sets tested, the use of Class Expert Ensembling and as an algorithmic technique

to improve predictions looks to potentially be a promising state-of-the-art method. For further

investigation, the expert ensembling framework could benefit from additional investigation into

the effects of its class composition scheme and sequential ordering procedures, which have been

shown to have some influence on the predicted outcomes.

Model CBA OA Counts

Trees 0.46 0.87 236.00

SVM 0.37 0.84 228.00

Naive Bayes 0.15 0.14 39.00

Random Forests 0.55 0.87 235.00

Adaboost 0.64 0.87 236.00

Climer (CBA,CBA,CP) 0.30 0.55 148.00

Climer (CBA,CBA,DM) 0.46 0.88 237.00

Climer (CBA,OA,CP) 0.46 0.88 237.00

Climer (CBA,OA,DM) 0.46 0.88 237.00

Climer (BA,OA,CP) 0.39 0.85 230.00

Climer (BA,OA,DM) 0.37 0.84 228.00

Table 5.3 Modeling results for the Annealing data set.
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Model A B C D U

Trees 0.00 0.26 0.99 1.00 0.18

SVM 0.00 0.00 1.00 1.00 0.00

Naive Bayes 1.00 0.77 0.02 0.42 0.09

Random Forests 1.00 0.23 0.99 1.00 0.18

Adaboost 1.00 0.35 0.96 1.00 0.46

Climer (CBA,CBA,CP) 0.00 0.77 0.50 1.00 0.09

Climer (CBA,CBA,DM) 0.00 0.26 0.99 1.00 0.18

Climer (CBA,OA,CP) 0.00 0.26 0.99 1.00 0.18

Climer (CBA,OA,DM) 0.00 0.26 0.99 1.00 0.18

Climer (BA,OA,CP) 0.00 0.26 0.97 1.00 0.09

Climer (BA,OA,DM) 0.00 0.00 1.00 1.00 0.00

Table 5.4 Per class recall for the Annealing data set.

Classes Experts

A forest

B forest

C forest

D tree

U tree

Overall Expert forest

Table 5.5 Class Expert choices for climer(CBA,CBA,DM) call on the Annealing data set.

Model CBA OA Counts

Trees 0.52 0.77 164.00

SVM 0.60 0.90 191.00

LDA 0.56 0.86 182.00

Naive Bayes 0.59 0.89 189.00

Random Forests 0.57 0.85 181.00

Nueral Networks 0.75 0.90 191.00

Adaboost 0.61 0.87 184.00

Climer (CBA,CBA,CP) 0.52 0.77 164.00

Climer (CBA,CBA,DM) 0.52 0.77 164.00

Climer (CBA,OA,CP) 0.52 0.77 164.00

Climer (CBA,OA,DM) 0.52 0.77 164.00

Climer (BA,OA,CP) 0.68 0.92 194.00

Climer (BA,OA,DM) 0.55 0.82 175.00

Table 5.6 Modeling results for the Balance Scale data set.
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Model B L R

Trees 0.00 0.87 0.84

SVM 0.00 1.00 0.99

LDA 0.00 0.99 0.91

Naive Bayes 0.00 0.97 1.00

Random Forests 0.00 0.95 0.94

Nueral Networks 0.40 0.97 0.94

Adaboost 0.05 0.96 0.95

Climer (CBA,CBA,CP) 0.00 0.87 0.84

Climer (CBA,CBA,DM) 0.00 0.87 0.84

Climer (CBA,OA,CP) 0.00 0.87 0.84

Climer (CBA,OA,DM) 0.00 0.87 0.84

Climer (BA,OA,CP) 0.20 0.99 0.99

Climer (BA,OA,DM) 0.05 0.98 0.84

Table 5.7 Per class recall for the Balance Scale data set.

Classes Experts

B nnet

L svm

R svm

Overall Expert nnet

Table 5.8 Class Expert choices for climer(BA,OA,CP) call on the Balance Scale data set.

Model CBA OA Counts

Trees 0.373 0.605 305

SVM 0.535 0.621 313

LDA 0.418 0.603 304

Naive Bayes 0.289 0.349 176

Random Forests 0.414 0.635 320

Nueral Networks 0.413 0.615 310

Adaboost 0.389 0.625 315

Climer (CBA,CBA,CP) 0.53 0.619 312

Climer (CBA,CBA,DM) 0.438 0.619 312

Climer (CBA,OA,CP) 0.54 0.627 316

Climer (CBA,OA,DM) 0.532 0.621 313

Climer (BA,OA,CP) 0.403 0.607 306

Climer (BA,OA,DM) 0.402 0.585 295

Table 5.9 Modeling results for the Yeast data set.
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Model CYT ER EXC ME1 ME2 ME3 MIT NUC P V

Trees 0.656 0 0.545 0.684 0.444 0.919 0.57 0.493 0 0

SVM 0.65 1 0.636 0.737 0.444 0.774 0.646 0.557 0 0

LDA 0.718 1 0.636 0.632 0.556 0.774 0.57 0.457 0 0

Naive Bayes 0.012 1 0.727 0.684 0 0.887 0.873 0.2 0 0

Random Forests 0.663 0 0.636 0.737 0.333 0.887 0.582 0.6 0 0

Nueral Networks 0.601 0 0.727 0.684 0.389 0.839 0.658 0.571 0 0

Adaboost 0.675 0 0.545 0.789 0.389 0.919 0.595 0.521 0 0

CEE (CBA,CBA,CP) 0.644 1 0.636 0.737 0.444 0.774 0.646 0.557 0 0

CEE (CBA,CBA,DM) 0.638 1 0.636 0.632 0.5 0.806 0.633 0.564 0 0

CEE (CBA,OA,CP) 0.644 1 0.636 0.737 0.444 0.774 0.658 0.579 0 0

CEE (CBA,OA,DM) 0.65 1 0.636 0.737 0.389 0.774 0.658 0.557 0 0

CEE (BA,OA,CP) 0.632 1 0.727 0.789 0.222 0.871 0.595 0.529 0 0

CEE (BA,OA,DM) 0.687 1 0.545 0.789 0.278 0.871 0.633 0.371 0 0

Table 5.10 Per class recall for the Yeast data set.

Classes Experts

CYT tree

ERL svm

EXC svm

ME1 svm

ME2 svm

ME3 svm

MIT nnet

NUC nnet

POX bayes

VAC bayes

Overall Expert svm

Table 5.11 Class Expert choices for climer(CBA,OA,CP) call on the Yeast data set.
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CHAPTER 6. TACKLING CLASS IMBALANCE WITH THE CLIMBR

PACKAGE IN R

6.1 Introduction

As interest in the class imbalance problem increases, so has the market demand for software

tools that directly address the non-trivial effects they have on prediction and classification tasks.

Current solutions to class imbalance issues, such as model evaluation and concept complexity,

involve the use of alternative measures, biased sampling, algorithmic modifications and/or a

combination of each. With so many avenues of approach, techniques and their implementations

are scattered across the landscape of scholarly literature, specifically in statistics, computer

science, electrical engineering, industrial engineering, or any field that relies heavily on the

analysis of data. Those who search diligently will sporadically find implementations of various

approaches, unfortunately, a single repository for class imbalance specific techniques does not

exist, forcing practitioners to rely on ad-hoc web searches for techniques and perform code

implementations at their own time-expense. It is the author’s desire to contribute to the class

imbalance body of work by creating a well packaged suite that specifically address the effects

of model evaluation and prediction in the presence of skewed distributions.

Following along the footsteps of Frank Harrell’s“HMisc”package, the“Class Imbalance in R”

package, aptly named “climbR” seeks to be a collection of functions and programming routines

that will assist scholars in their supervised learning pursuits. The climbR package seeks to aid

in not only the high level conceptual approaches, but the low-level programming nuances that

may occur. Again, it is the author’s hope that a centralized location for procedures applicable

to the class imbalance problem will not only assist those interested in solving one-off tasks,

but further spur interest in the field, motivating the creation, publication, and sharing of new
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state-of-the-art methods.

Specifically for this body of work, this the climbR package serves as documentation for the

implementation of the class balance accuracy measure and the class expert ensemble algorithm.

The remainder of this chapter will be dedicated to a walk-through of the current version of the

climbR package, focusing on its use in practice. For our exploration, we will be utilizing the

balance scale data set from the UCI machine learning repository. Collected from the psychology

literature, this data set was originally created to model psychological experimental results, but

has useful properties in both dimensionality and size that we will leverage.

> str(balance)

’data.frame’: 625 obs. of 5 variables:

class : Factor w/ 3 levels "B","L","R": 1 3 3 3 3 3 3 3 3 3 ...

Left.Weight : int 1 1 1 1 1 1 1 1 1 1 ...

Left.Distance : int 1 1 1 1 1 1 1 1 1 1 ...

Right.Weight : int 1 1 1 1 1 2 2 2 2 2 ...

Right.Distance: int 1 2 3 4 5 1 2 3 4 5 ...

> head(balance)

class Left.Weight Left.Distance Right.Weight Right.Distance

1 B 1 1 1 1

2 R 1 1 1 2

3 R 1 1 1 3

4 R 1 1 1 4

5 R 1 1 1 5

6 R 1 1 2 1

> summary(balance)

class Left.Weight Left.Distance Right.Weight Right.Distance

B: 49 Min. :1 Min. :1 Min. :1 Min. :1
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L:288 1st Qu.:2 1st Qu.:2 1st Qu.:2 1st Qu.:2

R:288 Median :3 Median :3 Median :3 Median :3

Mean :3 Mean :3 Mean :3 Mean :3

3rd Qu.:4 3rd Qu.:4 3rd Qu.:4 3rd Qu.:4

Max. :5 Max. :5 Max. :5 Max. :5

The dataset consists of five variables across 625 complete observations. Predictions will be

made on the target variable “class” which consists of three factor levels; balanced, left, and right

abbreviated as “B”, ”L” and “R”. Modeling this dataset will task algorithms to partition the

classes across a four dimensional space derived from the integer value explanatory variables.

> print(qplot(class,data=balance,geom="bar",

fill=class,main="Class distributions for the Balance Scale Dataset"))
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Class distributions for the Balance Scale Dataset

Figure 6.1 Class distributions of the Balance Scale Data.

It becomes apparent that this data set fails to satisfy the assumption of equal class distri-

butions because of the clear underrepresentation of the “B” category. For this data set there

exists a “multiple-majority” skew where two classes are identically represented to a much larger
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extent than the other. We will begin our analysis by building multiple models with the data

and calculating accuracy metrics on the resulting predictions. This process will make use of

the “climm” function which will automate the aforementioned process. Ideally, we would like

to have a model that performs well overall without neglecting minority class observations.

6.2 climm: Class Imbalance Models and Measures

A common method used to tackle new supervised learning tasks is the “shotgun” approach

where all available models are indiscriminately learned on the data. This involves simply fitting

as many models as possible to the data set to determine a rank ordering of the models according

to the predictive quality of the output. To account for potential over fitting and produce more

accurate estimates of the true misclassification error, a subset of the data, often 66% is used to

develop the models and the remaining 33% serve as the holdout test set for which the models

are applied. By using a holdout sample, we emulate the process of learning models on a training

data set and applying these models to make predictions on a new data set with an unknown

structure. The hope is that models do not over fit, forming partitions according to patterns

that exist beyond the training set, and will perform reasonably well in the absence of known

class memberships. Because the groupings are known in the test set, we can rank the models

according to their performance on the test data. Therefore the metrics calculated using the

contingency table derived from the predicted observations and the test set’s known observations

will be used to order the models. To add more rigor to the process, the procedure is repeated

for set number of repetitions in a bootstrap fashion, where each metric is then averaged across

the repetitions to form an unbiased estimate of its true value. This technique is standard in the

machine learning community and forms the core functionality of the class imbalance models

and measures function, “climm”.

The climm function takes the form:

center climm <- function(formula, data, models, measures, reps = 1, takeOut = 1, ...)

Inputs into the climm function include the prediction formula, a reference to the data

frame object, a list of models, a list of measures, the user-specified number of repetitions, and

the percentage of observations to take out the original data set for model training. The “...”
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informally called “dot dot dot” is the ellipsis feature that allows further arguments to be passed

on to the embedded functions that support them. As the primary mode of analysis, a one

repetition default has been set, along with a holdout proportion of one hundred percent to

allow for the prediction of the entire data set.

> balance.climm <- climm(

+ class ~ .,

+ data = balance,

+ models = c("tree", "svm", "lda", "bayes", "forest", "nnet"),

+ measures = c("cba", "fscore", "gmean", "ba", "rci",

+ "mcc", "cen", "oa", "counts", "class.cba", "class.recall",

+ "class.precision", "class.fscore", "class.counts"),

+ reps = 5, takeOut = 0.66)

> balance.climm

Data Sets: train test

Models Fit: tree svm lda bayes forest nnet

Number of Observations in each Training Set: 413

Number of Reps: 5

Here we call the climm function on the balance data set looking to analyze both the per class

and overall accuracy of six models set to their respective defaults, ala without parameter tuning.

To train the models, two-thirds of the data will be used and then applied to the remaining test

samples such that the preceding calculations done on the test set can be averaged across five

repetitions. The initial print output returns the number of data sets, the models fit, the size of

the training sets, and the number of repetitions. To store the various statistics model fits and

measures, a “climm” list object class was created. This special class object stores the model

fits and statistics for each repetition throughout the procedure, which allows for diagnostic

checking across each iteration.

> str(balance.climm)
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List of 2

\$ train:List of 6

:

:

:

\$ test :List of 6

..\$ ScalarMean : num [1:6, 1:9] 0.524 0.609 0.58 0.598 0.587 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..\$ : chr [1:6] "tree" "svm" "lda" "bayes" ...

.. .. ..\$ : chr [1:9] "cba" "fscore" "gmean" "ba" ...

..\$ PerClassMean :List of 6

.. ..\$ tree : num [1:5, 1:3] 0 0 0 0 0 ...

.. .. ..- attr(*, "dimnames")=List of 2

.. .. .. ..\$ : chr [1:5] "class.cba" "class.recall"

.. .. .. ..\$ : chr [1:3] "B" "L" "R"

.. ..\$ svm : num [1:5, 1:3] 0 0 0 0 0 ...

.. .. ..- attr(*, "dimnames")=List of 2

.. .. .. ..\$ : chr [1:5] "class.cba" "class.recall"

.. .. .. ..\$ : chr [1:3] "B" "L" "R"

.. ..\$ lda : num [1:5, 1:3] 0 0 0 0 0 ...

.. .. ..- attr(*, "dimnames")=List of 2

.. .. .. ..\$ : chr [1:5] "class.cba" "class.recall"

.. .. .. ..\$ : chr [1:3] "B" "L" "R"

.. ..\$ bayes : num [1:5, 1:3] 0 0 0 0 0 ...

.. .. ..- attr(*, "dimnames")=List of 2

.. .. .. ..\$ : chr [1:5] "class.cba" "class.recall"

.. .. .. ..\$ : chr [1:3] "B" "L" "R"

.. ..\$ forest: num [1:5, 1:3] 0 0 0 0 0 ...
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.. .. ..- attr(*, "dimnames")=List of 2

.. .. .. ..\$ : chr [1:5] "class.cba" "class.recall"

.. .. .. ..\$ : chr [1:3] "B" "L" "R"

.. ..\$ nnet : num [1:5, 1:3] 0.404 0.571 0.424 0 8.6 ...

.. .. ..- attr(*, "dimnames")=List of 2

.. .. .. ..\$ : chr [1:5] "class.cba" "class.recall"

.. .. .. ..\$ : chr [1:3] "B" "L" "R"

..\$ scalarRepMeas: num [1:6, 1:9, 1:5] 0.523 0.613 0.588 0.604 0.604 ...

.. ..- attr(*, "dimnames")=List of 3

.. .. ..\$ : chr [1:6] "tree" "svm" "lda" "bayes" ...

.. .. ..\$ : chr [1:9] "cba" "fscore" "gmean" "ba" ...

.. .. ..\$ : NULL

..\$ models : chr [1:6] "tree" "svm" "lda" "bayes" ...

..\$ numObs : int 212

..\$ numReps : num 5

- attr(*, "class")= chr "climbR.list"

Again, list objects have a hierarchical organizational structure that facilitate expedited

querying of desired outputs. For climm objects, this breaks down into two primary branches

that contain information on the training and test sets. Within each branch, the various average

statistics are stored separately for overall performance measures and their per class counter-

parts.

> round(balance.climm$ test$ ScalarMean,3)

cba fscore gmean ba rci mcc cen oa counts

tree 0.524 0.550 0.000 0.571 0.302 0.628 0.349 0.796 168.8

svm 0.609 0.630 0.000 0.653 0.635 0.843 0.155 0.911 193.2

lda 0.580 0.603 0.000 0.626 0.487 0.770 0.241 0.873 185.0

bayes 0.598 0.620 0.000 0.644 0.579 0.818 0.186 0.898 190.4



www.manaraa.com

110

forest 0.587 0.604 0.000 0.612 0.554 0.738 0.280 0.854 181.0

nnet 0.748 0.785 0.777 0.808 0.679 0.832 0.210 0.903 191.4

Modeling the Balance Scale dataset with the climm function produced bootstrap calcula-

tions for nine evaluation measures for six models. Basing our objective on maximizing overall

performance, support vector machines predictions yielded the highest level of accuracy. This is

also consistent across the other overall accuracy measures. However, when we shift our focus

towards per class performance, we see that neural networks outperformed support vector ma-

chines on each of the measures, and particularly on Class Balance Accuracy. We can now look

at the per class breakdown of the two top-performing models to give more insight.

> round(balance.climm$ test$ PerClassMean$svm,3)

B L R

class.cba 0 0.928 0.899

class.recall 0 0.974 0.986

class.precision 0 0.928 0.899

class.fscore 0 0.000 0.000

class.counts 0 97.600 95.600

> round(balance.climm$ test$ PerClassMean$nnet,3)

B L R

class.cba 0.404 0.923 0.918

class.recall 0.571 0.928 0.926

class.precision 0.424 0.950 0.954

class.fscore 0.000 0.000 0.000

class.counts 8.600 93.000 89.800

After deconstructing the results per class, we get a clearer picture of the difficulty support

vector machines has at finding representative bounds for the “B” class. Neural networks sac-

rifices some recall performance for the two majority classes to make significant gains in recall
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for the minority group. In the end, neural networks, on average, were able to recall 57% of the

observations from the “B” membership group.

In this example, we have used the“climm”function to not only fit models but to evaluate

them along different criteria. In practice this function can be used to quickly evaluate models,

giving the practitioner insight into the type of model that may be useful for her prediction

task. In certain situations, if a standout model is found, the climm procedure can be modified

to assess multiple models of the same type but with varying parameters reducing the time nec-

essary to fine tune the final model. In this capacity, the climm function acts as a solid initial

step for evaluating multiple methods across different objective criterion.

6.3 climer: Class Imbalance Experts

Recall that the class expert ensembling method is a multiple classifier system that uses a

novel class decomposition technique and sequential prediction algorithm to help improve predic-

tions in the presence of class imbalance. Within the climbR package, there is a implementation

of this procedure that can be called with the “climer” command. It steps through the expert

ensembling procedure only after first requiring the user to specify a per class measure, overall

measure, and a prediction ordering scheme. The integer program is then solved for the models

that perform best across each class and overall. Observations in the training set are ordered

according to the selected procedure and the predictions are made on a per class basis by their

respective models. Please refer to the algorithm and it’s treatment given in Chapter 5 for

further details.

Packaged together with the climm function, the climer command attempts to directly im-

prove on predictions on skewed response variables. Its R implementation takes the following

form:

function(formula, data, models, perClassMeas = ’class.cba’, overallMeas = ’cba’, perClassSort

= FALSE, ...)

With a function call similar to its climm cousin, many of the input parameters are the same.

To train a classifier system the user supplies a formula, dataset, a list of models, a single per
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class measure, an overall measure, and sorting procedure. Since the focus of this research is

on per class accuracy the default is set to the original class expert ensemble algorithm which

leverages class balance accuracy as both the per class and overall measure.

>data <- balance

>formula <- class ~ .

>newdata<-resample.cr(data,.66)

>data.tr<-newdata$train

>data.test<-newdata$test

> model.climer.ba.oa.pro <- climer(class ~ .,

+ data = data.tr,

+ models = c("tree","lda", "svm", "bayes", "forest", "nnet"),

+ perClassMeas = "class.recall",

+ overallMeas = "oa",

+ perClassSort = TRUE)

For this example, to highlight the climer’s versatility, we have chosen per class recall and

overall accuracy as the expert selection criteria. In a similar fashion to our last example, the

Balance Scale data set was first partitioned into a training and test set, each containing 66%

and 33% of the data, respectively. At the end of the modeling procedure the function returns

an object of the “climer” class which contains model fits and statistics for the procedure, which

can be accessed using the str() command. We use a polymorphic summary function to outputs

relevant modeling diagnostics; such as, the experts chosen per class, the overall expert, the

ordering by which the predictions were made, and lastly a confusion matrix based on the

training data.

> class(model.climer.ba.oa.mea)

[1] "climer"

> summary(model.climer.ba.oa.mea )
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Formula: class ~ .

Per Class Experts:

classes experts

1 B nnet

2 L nnet

3 R svm

Overall Expert: nnet

Class Order:

R L B

194 187 32

Confusion Matrix:

classes B L R

B 12 0 20

L 1 184 2

R 0 0 194

From the results, neural networks was the preferred model choice for classes “B” and “L”.

It was also the overall expert, however support vector machines was the stand out model for

predicting the “R” class. By using the descending per class measure ordering procedure, classes

were lined up according to the descending recall values. Therefore since the “B” class was the

most difficult to predict, it was placed in the last position.

> climer3b.pred<-predict.climer(model.climer.ba.oa.mea,data.test)

> head(climer3b.pred)



www.manaraa.com

114

class LW LD RW RD predictions

R 1 1 2 1 R perClass

R 1 1 2 4 R perClass

R 1 1 3 2 R perClass

R 1 1 3 3 R perClass

R 1 1 4 2 R perClass

R 1 1 5 2 R perClass

Making predictions on new data sets requires the use of the predict() command. This

statement call is generic and requires only the model climer object along with an identifier for

the new data set. Unlike other modeling procedures, the predict statement returns an updated

version the original data with the predictions appended to the back. At the end of this new

data frame you will find a column that indicates if that prediction was forecasted by a per class

expert or the overall. This can be meaningful when attempting to diagnose problems in the

modeling procedure.

> round(res.all,3)

CBA OA Counts

Trees 0.522 0.783 166

SVM 0.604 0.906 192

LDA 0.589 0.882 187

Naive Bayes 0.613 0.920 195

Random Forests 0.592 0.863 183

Nueral Networks 0.701 0.877 186

Adaboost 0.645 0.854 181

Climer (CBA,CBA,CP) 0.621 0.882 187

Climer (CBA,CBA,DM) 0.522 0.783 166

Climer (CBA,OA,CP) 0.621 0.887 188
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Climer (CBA,OA,DM) 0.597 0.892 189

Climer (BA,OA,CP) 0.589 0.882 187

Climer (BA,OA,DM) 0.687 0.910 193

> round(res.perclass,3)

B L R

Trees 0.000 0.832 0.872

SVM 0.000 0.980 0.989

LDA 0.000 0.960 0.957

Naive Bayes 0.000 1.000 1.000

Random Forests 0.000 0.941 0.936

Nueral Networks 0.294 0.960 0.894

Adaboost 0.118 0.911 0.926

Climer (CBA,CBA,CP) 0.059 0.960 0.947

Climer (CBA,CBA,DM) 0.000 0.832 0.872

Climer (CBA,OA,CP) 0.059 0.960 0.957

Climer (CBA,OA,DM) 0.000 0.990 0.947

Climer (BA,OA,CP) 0.000 0.960 0.957

Climer (BA,OA,DM) 0.235 0.950 0.989

To conclude, our modeling routine returned the second best ranking overall along both per

class and total accuracy. If the ultimate objective is to balance both the overall and per class

performance, the C.E.E. model is objectively the best choice. As a guided walk through of the

balance scale data set, we have shown the value added of using the climm and climer functions

to evaluate models and improve our predictive accuracy.

6.4 Utility Functions

The Class Imbalance in R package also includes utility functions to assist in low-level model-

ing tasks. For model evaluation, each of the measures is stored as a separate function which may
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be called on any defined table. The full set of measures implemented are: Class Balance Accu-

racy, F-Score, Geometric Mean, Balanced Accuracy, Relative Classifier Information, Mathew’s

Correlation Coefficient, Confusion Entropy, Regular Accuracy, Counts, per class Class Balance

Accuracy, per class Recall, per class Precision, per class F-Score, and per class Counts. A

calcMeasures() function is included that takes the implemented measures as an inputted list,

along with the contingency table, and returns an ordered list of the calculated measures for

that table.

A useful function for automatically dividing data sets into training and test samples is in-

cluded with the resample.cr() function. After subsetting the data, this command creates a list

of two data frames containing the partitioned data set.

By far the most useful utility function is makeTable(), which will normalize a non-square

contingency table into a kxk square matrix. This is important because often in multi–class

imbalance problems with multiple minority groups, the prediction method, try as it might, will

often be unable to predict any observations from said groups. Predictions are inferred by the

model, however that level of the factor is empty, so when creating a table with the base tabular

function the resulting matrix output will be misaligned preventing functions such as sum() and

diag() from operating as desired. A call to the makeTable() function will extend out the matrix

creating row and/or columns of all zeros.

> table(data.teste$class,nnet.pred)

nnet.pred

cp im imL imS imU om

cp 45 0 0 0 0 5

im 2 17 6 0 1 0

imL 0 0 1 0 0 0

imS 0 0 0 0 0 0

imU 0 2 7 1 2 2

om 0 0 1 3 1 1

omL 1 0 0 0 0 1
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pp 0 1 1 3 0 10

> makeTable(data.teste$class,nnet.pred)

cp im imL imS imU om omL pp

cp 45 0 0 0 0 5 0 0

im 2 17 6 0 1 0 0 0

imL 0 0 1 0 0 0 0 0

imS 0 0 0 0 0 0 0 0

imU 0 2 7 1 2 2 0 0

om 0 0 1 3 1 1 0 0

omL 1 0 0 0 0 1 0 0

pp 0 1 1 3 0 10 0 0

6.5 Package Expansion

There are many future usability extensions that can be made to enhance the climbR package.

Some low hanging fruit include the inclusion of the CEE multiple classifier system as a default

model into the climm function, support for per class and overall model diagnostic visualizations,

and the integration of other performance metrics. Since climbR share similar functionality

with the “caret” package by Max Kuhn, techniques suitable for class imbalance implemented

in that suite could be ported over to broaden climbR’s versatility. It is the authors hope that

this package will serve as a small initial step for what will become a larger one toward the

advancement of the class imbalance field of study.



www.manaraa.com

118

CHAPTER 7. CONCLUSION

From the beginning, this body of work was inspired, conceptualized and executed with the

intent to help address a more contemporary area of interest in the data mining field. As su-

pervised learning applications have grown in breadth, their use in situations where the target

variable is skewed towards one or more classes has become more prevalent, increasing the rel-

evance of the class imbalance problem. Since model evaluation is such an integral component

of the supervised learning process, as the procedure that determines if the learned model is

sufficiently predictive, our focus has been on the study of measures appropriate for use in this

special circumstance. Beyond the study of existing measures, the author offers a new perfor-

mance metric, Class Balance Accuracy, as a contribution to the class imbalance literature.

This dissertation, through theoretical derivation, exercises in example, designed experiments,

novel application and investigative studies show that Class Balance Accuracy is a suitable met-

ric for model measurement in the presence of class imbalance. Results highlight Class Balance

Accuracy as a conservative, class independent measure of predictive error whose construction

can be recast as a simultaneous lower bound of two measures, the average per class recall and

precision. Beyond its theoretical properties and characteristics in practice, its use as an embed-

ded optimization criteria was examined and in the case of instance selection, the integration of

class balance accuracy brought gains in both overall accuracy and per class recall on data sets

with multiple non-separable classes. Similarly, maximizing per class balance accuracy within

an expert ensemble framework boosted predictive performance of the multiple classifier system

in three of the UCI repository data sets. These results help establish the versatility of this

novel accuracy measure.

As a culmination of the effort devoted to addressing the class imbalance problem, an

open-source software implementation of the main results and techniques are being released as
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a step towards this research’s North Star. It is the author’s hope that the Class Imbalance

in R package serves as impetus for the collection and sharing of implemented routines dedi-

cated to addressing class imbalance modeling issues. In the end, we anticipate this centralized

repository to go beyond increasing efficiency, but encourage the advancement of the class and

balance literature through open-source reproducible research.

7.1 Future Extensions

Like all time constrained research, there is room left for further investigation. Within the

class imbalance literature as a whole, there is a need for an in-depth systematic survey of the

performance of binary class imbalance techniques as extended to the multi-class case. Further-

more, there is a need for a consensus driven framework that researchers can use to compare

and contrast results not only for new algorithmic prediction methods, but data sampling tech-

niques as well. Specifically for this research, there is an opportunity for further development

of the theoretical properties of class balance accuracy particularly around its asymptotics and

boundedness characteristics. More complex simulation studies may be conducted to gather

further supporting evidence for the measure and to grant insight into its performance in very

specific circumstances. With respect to instance selection, the study can be expanded to ac-

count for more complex structures in the original data, while making use of different modeling

techniques and maximization criteria. The class expert ensemble framework could be advanced

by analyzing the algorithm itself, paying careful attention to its performance comparisons not

only against other ensemble techniques but class decomposition methods as well. Lastly, the

climbR package can benefit from the inclusion of as many multi-class metrics and models as

deemed appropriate for the class imbalance problem. Other low hanging fruit include, ex-

panded plot functionality, support for class decomposition techniques, and updated multi-class

data sampling methods.
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A. ADDITIONAL THEORY AND R IMPLEMENTATION

Glimmer’s S: The Set Theory Forefather of Class Balance Accuracy

This work on Class Balance Accuracy was originally derived from prior research into simi-

larity metrics. One novel such metric that ultimately inspired CBA was Glimmer’s S. Initially

created as a technique to measure the similarity between two categorical variables, it’s for-

mulation eventually morphed into matrix notation where it served to compare the similarity

between the set of predicted observations and the original observed data. Its definition is as

follows:

Definition Glimmer’s S Let X and Y be sets such that Xi and Yi are a countable number

of levels which contain observations that exhibit the same ith characteristic. Define Nxi and

Nyi as the total number of observations within each factor level. Therefore, we can define

Glimmer’s S as:

S = |Xi
⋂

Yi|
max(Nxi,Nyi|

The intuition behind the similarity metric was to measure a weighted version of the relative

frequency, which would account for the maximum number of times a factor level had occured

together across both sets. The cardinality of the intersection between Xi and Yi is then divided

by the larger of the two sets. It becomes obvious that this notion of similarity between sets

could easily be extended to concept of distance. Similarity values increase when there is a large

number of matches or when the cardinality of the sets converge. The defining characteristic

of the measure is realized through the normalizing denominator which penalizes dissimilarity
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between the set sizes. Intuitively, the set sizes can be different for host of reasons and they

should be accounted for in such a manner that increases the likelihood that the two sets are

similar under the condition of comparable cardinality. This size normalization attempts to

drown out the effect when two sets have a substantial portion of matches, yet differ greatly in

sample size. Intuitively if all the observations in both sets occurred together jointly and at the

same cardinality, then the two sets would be identical. It is the culmination of the preceeding

logic that separated Glimmer’s S from other metrics such as Jaccard’s Simmilarity or Dice’s

coefficient.

Class Balance Accuracy Implementations in R

For reference, the R implementations of Class Balance Accuracy are as follows:

C.B.A. Per Class Contributions

class.cba <- function(z) {

# let z be a contingency table let x and y be the variables

xlev <- rownames(z)

xlev

ylev <- colnames(z)

ylev

n <- length(xlev)

n

m <- length(ylev)

m

across <- function(u, v, t) {

if(sum(u) == 0 & sum(v) == 0){ return(0)}

else{

t/max(sum(u), sum(v))

}
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}

xyacross <- array(NA, c(n, m), dimnames = list(xlev, ylev))

for (i in 1:n) {

for (j in 1:m) {

xyacross[i, j] <- across(z[i, ], z[, j], z[i, j])

}

}

return(diag(xyacross))

}

Class Balance Accuracy

cba <- function(z) {

# let z be a contingency table let x and y be the variables

xlev <- rownames(z)

xlev

ylev <- colnames(z)

ylev

n <- length(xlev)

n

m <- length(ylev)

m

across <- function(u, v, t) {

if(sum(u) == 0 & sum(v) == 0){ return(0)}

else{

t/max(sum(u), sum(v))

}

}
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xyacross <- array(NA, c(n, m), dimnames = list(xlev, ylev))

for (i in 1:n) {

for (j in 1:m) {

xyacross[i, j] <- across(z[i, ], z[, j], z[i, j])

}

}

return(mean(diag(xyacross)))

}
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